Effect of a Healing Agent on the Curing Reaction Kinetics and Its Mechanism in a Self-Healing System
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Theoretical Basis
2.3. Experimental Methods
2.3.1. Kinetic Analysis of the Curing Reaction
2.3.2. Fourier Transform Infrared (FTIR) Analysis
3. Results and Discussion
3.1. Effect of the BGE Diluent on Reaction Kinetics
3.2. Effect of Curing Agent MC120D on Reaction Kinetics
3.3. Curing Reaction Mechanism for the Healing Agent
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mihashi, H.; Nishiwaki, T. Development of engineered self-healing and self-repairing concrete-state-of-the-art report. J. Adv. Concr. Technol. 2012, 10, 170–184. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N. Self-healing in cementitious materials—A review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.C.; Kardani, O.; Cui, H.Z. Robust evaluation of self-healing efficiency in cementitious materials—A review. Constr. Build. Mater. 2015, 81, 233–247. [Google Scholar] [CrossRef]
- Souradeep, G.; Kua, H. Encapsulation technology and techniques in self-healing concrete. J. Mater. Civ. Eng. 2016, 28. [Google Scholar] [CrossRef]
- Liu, Q.; Li, B.; Schlangen, E.; Sun, Y.; Wu, S. Research on the mechanical, thermal, induction heating and healing properties of steel slag/steel fibers composite asphalt mixture. Appl. Sci. 2017, 7, 1088. [Google Scholar] [CrossRef]
- Tabaković, A.; Schuyffel, L.; Karač, A.; Schlangen, E. An evaluation of the efficiency of compartmented alginate fibres encapsulating a rejuvenator as an asphalt pavement healing system. Appl. Sci. 2017, 7, 647. [Google Scholar] [CrossRef]
- Cuenca, E.; Tejedor, A.; Ferrara, L. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 2018, 179, 619–632. [Google Scholar] [CrossRef]
- Wang, X.F.; Xing, F.; Zhang, M.; Han, N.X.; Qian, Z.W. Experimental study on cementitious composites embedded with organic microcapsules. Materials 2013, 6, 4064–4081. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Xing, F.; Xie, Q.; Han, N.X.; Kishi, T.; Ahn, T.H. Mechanical behavior of a capsule embedded in cementitious matrix-macro model and numerical simulation. J. Ceram. Process. Res. 2015, 16, 74–82. [Google Scholar]
- Wang, X.; Sun, P.; Han, N.; Xing, F. Experimental study on mechanical properties and porosity of organic microcapsules based self-healing cementitious composite. Materials 2017, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Han, R.; Han, T.L.; Han, N.X.; Xing, F. Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory. Mater. Chem. Phys. 2018, 215, 346–354. [Google Scholar] [CrossRef]
- Wang, X.F.; Han, R.; Tao, J.; Han, T.L.; Zhu, G.M.; Tang, J.N.; Han, N.X.; Xing, F. Identification of mechanical parameters of urea-formaldehyde microcapsules using finite-element method. Compos. Part B Eng. 2018, 158, 249–258. [Google Scholar] [CrossRef]
- Han, N.; Xing, F. Intelligent resilience of cementitious materials for marine infrastructures. J. Ceram. Process. Res. 2015, 16, 14–21. [Google Scholar]
- Han, N.-X.; Xing, F. A comprehensive review of the study and development of microcapsule based self-resilience systems for concrete structures at Shenzhen University. Materials 2017, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M. A Study on Microcapsule Based Self-Healing Method and Mechanism for Cementitious Composites. Ph.D. Thesis, Central South University, Changsha, China, 30 May 2013. [Google Scholar]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Garcia, A. Effect of capsule addition and healing temperature on the self-healing potential of asphalt mixtures. Mater. Struct. 2018, 51, 53. [Google Scholar] [CrossRef]
- Su, J.-F.; Schlangen, E.; Qiu, J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder Technol. 2013, 235, 563–571. [Google Scholar] [CrossRef]
- Su, J.-F.; Yang, P.; Wang, Y.-Y.; Han, S.; Han, N.-X.; Li, W. Investigation of the self-healing behaviors of microcapsules/bitumen composites by a repetitive direct tension test. Materials 2016, 9, 600. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-F.; Wang, Y.-Y.; Han, N.-X.; Yang, P.; Han, S. Experimental investigation and mechanism analysis of novel multi-self-healing behaviors of bitumen using microcapsules containing rejuvenator. Constr. Build. Mater. 2016, 106, 317–329. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Z.; Chen, G.; Zhu, G.; Han, N.; Schlangen, E.; Xing, F. Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials. Constr. Build. Mater. 2016, 105, 487–495. [Google Scholar] [CrossRef]
- Lv, L.; Schlangen, E.; Yang, Z.; Xing, F. Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials. Materials 2016, 9, 1025. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Van Stappen, J.; Bultreys, T.; Gilabert, F.A.; Hillewaere, X.K.D.; Gómez, D.G.; Van Tittelboom, K.; Dhaene, J.; De Belie, N.; Van Paepegem, W.; Du Prez, F.E. The microstructure of capsule containing self-healing materials: A micro-computed tomography study. Mater. Charact. 2016, 119, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Šavija, B.; Feiteira, J.; Araújo, M.; Chatrabhuti, S.; Raquez, J.-M.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Schlangen, E. Simulation-aided design of tubular polymeric capsules for self-healing concrete. Materials 2017, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Paluvai, N.R.; Mohanty, S.; Nayak, S.K. Synthesis and modifications of epoxy resins and their composites: A review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. [Google Scholar] [CrossRef]
- Pane, I.; Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res. 2005, 35, 1155–1164. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Preparation and characterization of microencapsulated polythiol. Polymer 2008, 49, 2531–2541. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Crane, L.W.; Dynes, P.J.; Kaelble, D.H. Analysis of curing kinetics in polymer composites. J. Polym. Sci. 1973, 11, 533–538. [Google Scholar] [CrossRef]
- Choi, E.J.; Seo, J.C.; Bae, H.-K.; Lee, J.K. Synthesis and curing of new aromatic azomethine epoxies with alkoxy side groups. Eur. Polym. J. 2004, 40, 259–265. [Google Scholar] [CrossRef]
- Farkas, A.; Strohm, P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci. 1968, 12, 159–168. [Google Scholar] [CrossRef]
- Ricciardi, F.; Romanchick, W.A.; Joullie, M.M. 1,3-dialkylimidazolium salts as latent catalysts in the curing of epoxy resins. J. Polym. Sci. Polym. Lett. Ed. 1983, 21, 1475–1481. [Google Scholar] [CrossRef]
- Ni, Z.; Du, X.X.; Wang, S.; Xing, F. Kinetics of synthesis of UF microcapsules. J. Shenzhen Univ. Sci. Eng. 2011, 28, 249–254. [Google Scholar]
- González, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on Epoxy Resins—Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, Infrared Spectroscopy-Materials Science, Engineering and Technology; Theophile, T., Ed.; IntechOpen Limited: London, UK, 2012; pp. 261–284. ISBN 978-953-51-0537-4. [Google Scholar]
- Parameswaranpillai, J.; Hameed, N.; Pionteck, J.; Woo, E.M. Handbook of Epoxy Blends; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-40041-9. [Google Scholar]
- Panda, H. Epoxy Resins Technology Handbook (Manufacturing Process, Synthesis, Epoxy Resin Adhesives and Epoxy Coatings); Asia Pacific Business Press Inc.: Delhi, India, 2017; ISBN 978-8178331744. [Google Scholar]
- Abdelkader, A.F.; White, J.R. Curing characteristics and internal stresses in epoxy coatings: Effect of crosslinking agent. J. Mater. Sci. 2005, 40, 1843–1854. [Google Scholar] [CrossRef]
- Ooi, S.K.; Cook, W.D.; Simon, G.P.; Such, C.H. DSC studies of the curing mechanisms and kinetics of BADGE using imidazole curing agents. Polymer 2000, 41, 3639–3649. [Google Scholar] [CrossRef]
- Du, X.X. Self-Healing Microcapsules and Its Polymer Composite Materials. Master’s Thesis, Shenzhen University, Shenzhen, China, 1 June 2009. [Google Scholar]
BGE Fraction (%) | −ln(β/TP2) ~ 1000/TP Linear Fitting | Relative Coefficient R2 | Activation Energy E (kJ mol−1) | Reaction Order n |
---|---|---|---|---|
−lnβ ~ 1000/TP Linear Fitting | ||||
10.0 | y = −3.65469 + 5.72375x | 0.998 | 47.59 | 0.870 |
y = −17.76639 + 6.57637x | 0.999 | |||
12.5 | y = −5.68331 + 6.55079x | 0.969 | 54.47 | 0.885 |
y = −19.78786 + 7.40054x | 0.976 | |||
15.0 | y = −4.4576 + 6.06282x | 0.998 | 50.41 | 0.877 |
y = −18.56654 + 6.91445x | 0.999 | |||
17.5 | y = −3.36634 + 5.61983x | 0.998 | 46.73 | 0.868 |
y = −17.4921 + 6.47836x | 0.998 | |||
20.0 | y = −3.32175 + 5.62768x | 0.998 | 46.79 | 0.868 |
y = −17.44446 + 6.48505x | 0.998 |
BGE Fraction (%) | β (K·min−1) | Ti (K) | TP (K) | Tf (K) | A (1/s) | k |
---|---|---|---|---|---|---|
10 | 5 | 347.3 | 407.3 | 447.3 | 2.19 × 105 | 0.17 |
10 | 360.0 | 425.0 | 470.0 | 2.24 × 105 | 0.32 | |
15 | 366.0 | 436.0 | 481.0 | 2.27 × 105 | 0.45 | |
20 | 376.1 | 446.1 | 481.1 | 2.15 × 105 | 0.58 | |
12.5 | 5 | 353.2 | 407.0 | 522.0 | 1.94 × 106 | 0.20 |
10 | 363.2 | 423.2 | 533.2 | 1.93 × 106 | 0.37 | |
15 | 376.3 | 436.3 | 546.3 | 1.71 × 106 | 0.52 | |
20 | 352.8 | 437.8 | 552.8 | 2.16 × 106 | 0.68 | |
15.0 | 5 | 348.0 | 408.2 | 448.2 | 5.13 × 105 | 0.18 |
10 | 363.0 | 424.1 | 468.0 | 5.45 × 105 | 0.34 | |
15 | 361.7 | 436.7 | 476.7 | 5.10 × 105 | 0.48 | |
20 | 339.1 | 444.1 | 479.1 | 5.22 × 105 | 0.61 | |
17.5 | 5 | 345.3 | 408.5 | 448.5 | 1.59 × 105 | 0.17 |
10 | 363.1 | 425.3 | 470.3 | 1.70 × 105 | 0.31 | |
15 | 363.1 | 438.1 | 478.1 | 1.64 × 105 | 0.44 | |
20 | 372.7 | 447.7 | 482.7 | 1.59 × 105 | 0.56 | |
20.0 | 5 | 355.0 | 410.0 | 450.0 | 1.53 × 105 | 0.17 |
10 | 362.2 | 427.2 | 467.2 | 1.62 × 105 | 0.31 | |
15 | 365.6 | 440.6 | 480.6 | 1.53 × 105 | 0.43 | |
20 | 369.0 | 449.0 | 474.0 | 1.55 × 105 | 0.56 |
MC120D Fraction (%) | −ln(β/TP2) ~ 1000/TP Linear Fitting | Relative Coefficient R2 | Activation Energy E (kJ mol−1) | Reaction Order n |
---|---|---|---|---|
−lnβ ~ 1000/TP Linear Fitting | ||||
10 | y = −4.81416 + 6.36782x | 0.985 | 52.94 | 0.880 |
y = −18.96889 + 7.23911x | 0.989 | |||
20 | y = −3.36634 + 5.61983x | 0.998 | 46.73 | 0.868 |
y = −17.4921 + 6.47836x | 0.998 | |||
30 | y = −6.91955 + 6.99507x | 0.991 | 58.16 | 0.892 |
y = −21.00677 + 7.83769x | 0.993 | |||
40 | y = −5.98578 + 6.53037x | 0.999 | 54.30 | 0.888 |
y = −20.03786 + 7.35817x | 0.999 | |||
50 | y = −11.31952 + 8.65504x | 0.981 | 71.96 | 0.913 |
y = −25.37057 + 9.48248x | 0.984 |
MC120D Fraction (%) | β (K·min−1) | Ti (K) | TP (K) | Tf (K) | A (1/s) | k |
---|---|---|---|---|---|---|
10 | 5 | 351.9 | 416.9 | 446.9 | 7.87 × 105 | 0.18 |
10 | 356.1 | 436.1 | 456.1 | 7.35 × 105 | 0.33 | |
15 | 367.9 | 442.9 | 467.9 | 8.53 × 105 | 0.49 | |
20 | 378.9 | 453.9 | 478.9 | 7.65 × 105 | 0.62 | |
20 | 5 | 345.3 | 408.5 | 448.5 | 1.59 × 105 | 0.17 |
10 | 363.1 | 425.3 | 470.3 | 1.70 × 105 | 0.31 | |
15 | 363.1 | 438.1 | 478.1 | 1.64 × 105 | 0.44 | |
20 | 372.7 | 447.7 | 482.7 | 1.59 × 105 | 0.56 | |
30 | 5 | 346.6 | 404.2 | 439.2 | 7.02 × 106 | 0.21 |
10 | 361.1 | 419.6 | 469.6 | 6.90 × 106 | 0.40 | |
15 | 371.1 | 426.6 | 486.6 | 7.63 × 106 | 0.58 | |
20 | 376.1 | 436.1 | 526.1 | 6.80 × 106 | 0.74 | |
40 | 5 | 344.1 | 399.1 | 434.1 | 2.62 × 106 | 0.20 |
10 | 370.3 | 415.3 | 470.3 | 2.56 × 106 | 0.38 | |
15 | 355.0 | 425.0 | 485.0 | 2.55 × 106 | 0.54 | |
20 | 371.1 | 431.1 | 511.1 | 2.66 × 106 | 0.70 | |
50 | 5 | 350.0 | 400.1 | 430.1 | 6.70 × 108 | 0.27 |
10 | 364.5 | 409.5 | 464.5 | 7.77 × 108 | 0.52 | |
15 | 362.7 | 417.7 | 482.7 | 7.41 × 108 | 0.74 | |
20 | 375.0 | 425.0 | 495.0 | 6.69 × 108 | 0.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, M.; Xing, F.; Han, N. Effect of a Healing Agent on the Curing Reaction Kinetics and Its Mechanism in a Self-Healing System. Appl. Sci. 2018, 8, 2241. https://doi.org/10.3390/app8112241
Wang X, Zhang M, Xing F, Han N. Effect of a Healing Agent on the Curing Reaction Kinetics and Its Mechanism in a Self-Healing System. Applied Sciences. 2018; 8(11):2241. https://doi.org/10.3390/app8112241
Chicago/Turabian StyleWang, Xianfeng, Ming Zhang, Feng Xing, and Ningxu Han. 2018. "Effect of a Healing Agent on the Curing Reaction Kinetics and Its Mechanism in a Self-Healing System" Applied Sciences 8, no. 11: 2241. https://doi.org/10.3390/app8112241
APA StyleWang, X., Zhang, M., Xing, F., & Han, N. (2018). Effect of a Healing Agent on the Curing Reaction Kinetics and Its Mechanism in a Self-Healing System. Applied Sciences, 8(11), 2241. https://doi.org/10.3390/app8112241