Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces
Abstract
:1. Introduction
2. Structures and Calculation Methods
3. Results and Discussion
3.1. Interface Structures
3.2. Interface Magnetic Behaviors
3.3. Interface Electronic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Segu, D.Z.; Khan, P.V.; Hwang, P. Experimental and direct numerical analysis of hard-disk drive. J. Mech. Sci. Technol. 2018, 32, 3507–3513. [Google Scholar] [CrossRef]
- Kubota, T.; Ina, Y.; Wen, Z.; Takanashi, K. Interface Tailoring Effect for Heusler Based CPP-GMR with an L12-Type Ag3Mg Spacer. Materials 2018, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Satoshi, S.; Susumu, H.; Masayuki, T.; Yuzo, K.; Hitoshi, I. All-metallic nonlocal spin valves using polycrystalline Co2(FeMn)Si Heusler alloy with large output. Appl. Phys. Express 2015, 8, 023103. [Google Scholar]
- Koki, M.; Shinya, K.; Yukiko, K.T.; Kouta, K.; Yoshichika, O.; Seiji, M.; Kazuhiro, H. High output voltage of magnetic tunnel junctions with a Cu(In0.8Ga0.2)Se2 semiconducting barrier with a low resistance–area product. Appl. Phys. Express 2017, 10, 013008. [Google Scholar]
- Li, S.; Takahashi, Y.K.; Sakuraba, Y.; Chen, J.; Furubayashi, T.; Mryasov, O.; Faleev, S.; Hono, K. Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve. J. Appl. Phys. 2016, 119, 093911. [Google Scholar] [CrossRef]
- Çakır, A.; Acet, M. Non-volatile high-temperature shell-magnetic pinning of Ni-Mn-Sn Heusler precipitates obtained by decomposition under magnetic field. J. Magn. Magn. Mater. 2018, 448, 13–18. [Google Scholar] [CrossRef]
- Nayak, A.K.; Kumar, V.; Ma, T.; Werner, P.; Pippel, E.; Sahoo, R.; Damay, F.; Rößler, U.K.; Felser, C.; Parkin, S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 2017, 548, 561–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; D’souza, S.W.; Nayak, J.; Suard, E.; Chapon, L.; Senyshyn, A.; Petricek, V.; Skourski, Y.; Nicklas, M.; Felser, C.; et al. Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa. Nat. Commun. 2016, 7, 12671. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Fenglong, W.; Gesang, D.; Jinli, Y.; Changjun, J. Piezostrain tuning non-volatile 90° magnetic easy axis rotation in Co2FeAl Heusler alloy film grown on Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures. J. Phys. D Appl. Phys. 2016, 49, 455001. [Google Scholar]
- Dutta, S.; Nikonov, D.E.; Manipatruni, S.; Young, I.A.; Naeemi, A. Overcoming thermal noise in non-volatile spin wave logic. Sci. Rep. 2017, 7, 1915. [Google Scholar] [CrossRef] [PubMed]
- Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, B.; Yuan, H.; Feng, Y.; Chen, H. The defect-induced changes of the electronic and magnetic properties in the inverse Heusler alloy Ti2CoAl. J. Solid State Chem. 2015, 221, 311–317. [Google Scholar] [CrossRef]
- Vasileiadis, T.; Waldecker, L.; Foster, D.; Da Silva, A.; Zahn, D.; Bertoni, R.; Palmer, R.E.; Ernstorfer, R. Ultrafast heat flow in heterostructures of Au nanoclusters on thin-films: Atomic-disorder induced by hot electrons. arXiv, 2018; arXiv:1803.00074. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Hongkuan, Y.; Anlong, K.; Yu, F.; Hong, C. Tunable magnetism and half-metallicity in bulk and (100) surface of quaternary Co2MnGe1−xGax Heusler alloy. J. Phys. D Appl. Phys. 2011, 44, 405301. [Google Scholar]
- Shen, X.; Yu, G.; Zhang, C.; Wang, T.; Huang, X.; Chen, W. A theoretical study on the structures and electronic and magnetic properties of new boron nitride composite nanosystems by depositing superhalogen Al13 on the surface of nanosheets/nanoribbons. Phys. Chem. Chem. Phys. 2018, 20, 15424–15433. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, D.; Wang, S.; Ma, Q.; Liang, S.; Wei, H.; Han, X.; Hesjedal, T.; Ward, R.; Kohn, A. Effect of interfacial structures on spin dependent tunneling in epitaxial L10-FePt/MgO/FePt perpendicular magnetic tunnel junctions. J. Appl. Phys. 2015, 117, 083904. [Google Scholar] [CrossRef]
- Xu, A.; Shi, L.; Zhao, T. Thermal effects on the sedimentation behavior of elliptical particles. Int. J. Heat Mass Tran. 2018, 126, 753–764. [Google Scholar] [CrossRef]
- Grimm, R.; Marchi, S. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability. Earth Planet. Sci. Lett. 2018, 485, 1–8. [Google Scholar] [CrossRef]
- Parkin, S.S.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, E.; Tsunegi, S.; Oogane, M.; Naganuma, H.; Ando, Y. The effect of inserting thin Co2MnAl layer into the Co2MnSi/MgO interface on tunnel magnetoresistance effect. J. Phys. Conf. Ser. 2011, 266, 012104. [Google Scholar] [CrossRef]
- Liu, H.-X.; Honda, Y.; Taira, T.; Matsuda, K.-I.; Arita, M.; Uemura, T.; Yamamoto, M. Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling. Appl. Phys. Lett. 2012, 101, 132418. [Google Scholar] [CrossRef]
- Bai, Z.; Lu, Y.; Shen, L.; Ko, V.; Han, G.; Feng, Y. Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device. J. Appl. Phys. 2012, 111, 093911. [Google Scholar] [CrossRef]
- Rotjanapittayakul, W.; Prasongkit, J.; Rungger, I.; Sanvito, S.; Pijitrojana, W.; Archer, T. Search for alternative magnetic tunnel junctions based on all-Heusler stacks. arXiv, 2018; arXiv:1805.08603. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Taira, T.; Ishikawa, T.; Itabashi, N.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a Heusler alloy Co2MnGe thin film and a MgO barrier. J. Phys. D Appl. Phys. 2009, 42, 084015. [Google Scholar] [CrossRef]
- Furubayashi, T.; Kodama, K.; Sukegawa, H.; Takahashi, Y.; Inomata, K.; Hono, K. Current-perpendicular-to-plane giant magnetoresistance in spin-valve structures using epitaxial Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 trilayers. Appl. Phys. Lett. 2008, 93, 122507. [Google Scholar] [CrossRef]
- Katsnelson, M.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.; De Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Guo, Q.; Li, Y.D.; Wen, L. Total ionizing dose and synergistic effects of magnetoresistive random-access memory. Nucl. Sci. Tech. 2018, 29, 111. [Google Scholar] [CrossRef]
- Bayar, E.; Kervan, N.; Kervan, S. Half-metallic ferrimagnetism in the Ti2CoAl Heusler compound. J. Magn. Magn. Mater. 2011, 323, 2945–2948. [Google Scholar] [CrossRef]
- Drief, M.; Guermit, Y.; Benkhettou, N.; Rached, D.; Rached, H.; Lantri, T. First-Principle Study of Half-Metallic Ferrimagnet Behavior in Titanium-Based Heusler Alloys Ti2FeZ (Z = Al, Ga, and In). J. Supercond. Nov. Magn. 2018, 31, 1059–1065. [Google Scholar] [CrossRef]
- Dahmane, F.; Benalia, S.; Djoudi, L.; Tadjer, A.; Khenata, R.; Doumi, B.; Aourag, H. First-principles study of structural, electronic, magnetic and half-metallic properties of the Heusler alloys Ti2ZAl (Z = Co, Fe, Mn). J. Supercond. Nov. Magn. 2015, 28, 3099–3104. [Google Scholar] [CrossRef]
- Sterwerf, C.; Meinert, M.; Schmalhorst, J.-M.; Reiss, G. High TMR ratio in Co2FeSi and Fe2CoSi based magnetic tunnel junctions. arXiv, 2013; arXiv:1308.2072. [Google Scholar]
- Chen, Y.; Wu, B.; Feng, Y.; Yuan, H.-K.; Chen, H. Half-metallicity and magnetism of the quaternary inverse full-Heusler alloy Ti2−xMxCoAl (M = Nb, V) from the first-principles calculations. Eur. Phys. J. B 2014, 87, 24. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, B.; Yuan, H.; Kuang, A.; Chen, H. Magnetism and half-metallicity in bulk and (100) surface of Heusler alloy Ti2CoAl with Hg2CuTi-type structure. J. Alloys Compd. 2013, 557, 202–208. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Filippov, S.; Magadov, K.Y. Spin polarization-scaling quantum maps and channels. Lobachevskii J. Math. 2018, 39, 65–70. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.-M. First-principles study on the thermodynamic stability, magnetism, and half-metallicity of full-Heusler alloy Ti2FeGe (001) surface. Phys. Lett. A 2017, 381, 1592–1597. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xia, T.S. Spin Injection into Graphene from Heusler Alloy Co2MnGe (111) Surface: A First Principles Study. Mater. Sci. Forum 2018, 914, 111–116. [Google Scholar] [CrossRef]
Interface Termination | Bond Type | Bond Length (Å) |
---|---|---|
CoCo–Mg | Co–Mg | 4.28 |
TiTi–Mg | Ti–Mg | 4.05 |
AlAl–Mg | Al–Mg | 3.99 |
TiAl–Mg | Al–Mg | 3.99 |
Ti–Mg | 4.06 | |
TiCo–Mg | Al–Mg | 3.55 |
Co–Mg | 4.02 | |
CoCo–O | Co–O | 2.07 |
TiTi–O | Ti–O | 2.14 |
AlAl–O | Al–O | 2.06 |
TiAl–O | Al–O | 2.16 |
Ti–O | 2.15 | |
TiCo–O | Ti–O | 2.08 |
Co–O | 2.83 |
Termination | Layers | Ti | Co | Al | O | Mg |
---|---|---|---|---|---|---|
bulk | 0.94 (1.68) | −0.48 | −0.14 | 0.00 | 0.00 | |
TiAl | (100) surface | 1.08 | −0.36 | −0.18 | 0.00 | 0.00 |
TiCo | (100) surface | 1.70 | −0.20 | −0.10 | 0.00 | 0.00 |
TiAl–Mg | interface | 1.10 | −0.40 * | −0.20 | 0.04 | 0.00 |
middle layer | 0.88 (1.59) | −0.32 | −0.12 | 0.00 | 0.00 | |
TiCo–Mg | interface | 1.64 | −0.07 | 0.09 * | 0.02 | 0.02 |
middle layer | 0.82 (1.62) | −0.24 | −0.12 | 0.00 | 0.00 | |
CoCo–Mg | interface | −0.20 * | 1.26(0.16) | −0.06 * | 0.00 | 0.00 |
middle layer | 0.84 (1.66) | −0.34 | −0.12 | 0.00 | 0.00 | |
TiTi–Mg | interface | 1.02 | 0.28 * | − | 0.02 | 0.03 |
middle layer | 0.86 ( 1.66) | −0.34 | −0.14 | 0.00 | 0.00 | |
AlAl–Mg | interface | 0.34 * | 0.40 * | −0.02 | 0.00 | 0.00 |
middle layer | 0.86 (1.6) | −0.34 | −0.12 | 0.00 | 0.00 | |
TiAl–O | interface | 0.90 | −0.22 * | −0.08 | 0.00 | 0.02 |
middle layer | 0.88 (1.64) | −0.44 | −0.16 | 0.00 | 0.00 | |
TiCo–O | interface | 0.76 | −0.12 | 0.08 * | 0.04 | 0.02 |
middle layer | 0.88 (1.62) | −0.08 | 0.12 | 0.00 | 0.00 | |
CoCo–O | interface | 0.18 * | 0.32(0.14) | −0.06 * | 0.00 | 0.00 |
middle layer | 0.80 (1.66) | −0.38 | −0.12 | 0.00 | 0.00 | |
TiTi–O | interface | 0.32 | 0.10 * | − | 0.00 | 0.00 |
middle layer | 0.88 (1.76) | −0.44 | −0.12 | 0.00 | 0.00 | |
AlAl–O | interface | 1.46 * | 0.56 * | −0.02 | 0.00 | 0.00 |
middle layer | 0.86 (1.70) | −0.40 | −0.12 | 0.00 | 0.00 |
Interface Layers | TiAl–Mg | TiCo–Mg | CoCo–Mg | TiTi–Mg | AlAl–Mg |
I-type P (%) | 66.21 | 20.16 | 8.22 | −1.23 | 22.36 |
I-type N↑ (states/eV) | 5.51 | 6.55 | 3.44 | 6.30 | 4.60 |
I-type N↓ (states/eV) | 1.12 | 4.35 | 2.92 | 6.46 | 2.92 |
II-type P (%) | 65.72 | 19.85 | 8.13 | −0.77 | 22.25 |
II-type N↑ (states/eV) | 5.59 | 6.61 | 3.46 | 6.42 | 4.67 |
II-type N↓ (states/eV) | 1.16 | 4.42 | 2.94 | 6.52 | 2.97 |
Interface Layers | TiAl–Mg | TiCo–Mg | CoCo–Mg | TiTi–Mg | AlAl–Mg |
I-type P (%) | 30.51 | 54.62 | 46.50 | −27.96 | 68.83 |
I-type N↑ (states/eV) | 3.58 | 7.02 | 4.42 | 3.38 | 3.48 |
I-type N↓ (states/eV) | 1.91 | 2.06 | 1.61 | 6.00 | 0.64 |
II-type P (%) | 30.29 | 54.20 | 46.34 | −27.27 | 65.20 |
II-type N↑ (states/eV) | 3.72 | 7.51 | 4.58 | 3.47 | 3.61 |
II-type N↓ (states/eV) | 1.99 | 2.23 | 1.68 | 6.07 | 0.76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Huang, H.; Zhou, G.; Feng, Y.; Chen, Y.; Wang, X. Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Appl. Sci. 2018, 8, 2336. https://doi.org/10.3390/app8122336
Wu B, Huang H, Zhou G, Feng Y, Chen Y, Wang X. Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Applied Sciences. 2018; 8(12):2336. https://doi.org/10.3390/app8122336
Chicago/Turabian StyleWu, Bo, Haishen Huang, Guangdong Zhou, Yu Feng, Ying Chen, and Xiangjian Wang. 2018. "Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces" Applied Sciences 8, no. 12: 2336. https://doi.org/10.3390/app8122336
APA StyleWu, B., Huang, H., Zhou, G., Feng, Y., Chen, Y., & Wang, X. (2018). Structure, Magnetism, and Electronic Properties of Inverse Heusler Alloy Ti2CoAl/MgO(100) Herterojuction: The Role of Interfaces. Applied Sciences, 8(12), 2336. https://doi.org/10.3390/app8122336