Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sasikala, C.; Jiwal, S.; Rout, P.; Ramya, M. Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil. World J. Microbiol. Biotechnol. 2012, 28, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, C.D.S. The Pesticide Manual: A World Compendium, 15th ed.; British Crop Protection Council: Hampshire, UK, 2015. [Google Scholar]
- Oliver, G.R.; Bolles, H.G.; Shurdut, B.A. Chlorpyrifos: Probabilistic assessment of exposure and risk. Neurotoxicology 2000, 21, 203–208. [Google Scholar] [PubMed]
- Johnson, D.E.; Seidler, F.J.; Slotkin, T.A. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chlorpyrifos. Brain Res. Bull. 1998, 45, 143–147. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Anjum, F.M.; Ahmed, A.; Randhawa, M.S. Field incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in fresh and processed vegetables. Food Chem. 2007, 103, 1016–1023. [Google Scholar] [CrossRef]
- Korea Crop Protection Association (KCPA). Using Guideline of Crop Protection Agents; Samjung Inc.: Seoul, Korea, 2016. [Google Scholar]
- Paterson, S.; Mackay, D. A model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 1994, 28, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Lee, B.M.; Kim, C.S.; Park, K.H.; Park, S.W.; Kwon, H.; Kim, J.H.; Choi, G.H.; Lim, S.J. Long-term monitoring of pesticide residues in arable soils in Korea. Korean J. Pestic. Sci. 2013, 17, 283–292. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Kim, H.K.; Choi, D.S.; Kim, S.G. Analysis of recent four years situation for pesticide residues in the GAP certified agricultural products analyzed by national agricultural cooperative federation. Korean J. Pestic. Sci. 2013, 17, 271–282. [Google Scholar] [CrossRef]
- Hwang, J.I.; Jeon, S.O.; Lee, S.H.; Lee, S.E.; Hur, J.H.; Kim, K.R.; Kim, J.E. Distribution patterns of organophosphorous insecticide chlorpyrifos absorbed from soil into cucumber. Korean J. Pestic. Sci. 2014, 18, 148–155. [Google Scholar] [CrossRef]
- Li, H.; Sheng, G.; Chiou, C.T.; Xu, O. Relationship of organic contaminant equilibrium sorption and kinetic uptake in plants. Environ. Sci. Technol. 2005, 39, 4864–4870. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, E.P. Plant absorption of insecticides, absorption of some chlorinated hydrocarbon insecticide form soil into various crops. J. Agric. Food Chem. 1959, 7, 430–434. [Google Scholar] [CrossRef]
- Lichtenstein, E.P. Insecticide uptake from soils, insecticidal residues in various crops grown in soils treated with abnormal rates of aldrin and heptachlor. J. Agric. Food Chem. 1960, 8, 448–451. [Google Scholar] [CrossRef]
- Lichtenstein, E.P.; Myrdal, G.R.; Schulz, K.R. Insecticide uptake from soils, absorption of insecticidal residues from contaminated soils into five carrot varieties. J. Agric. Food Chem. 1965, 13, 126–131. [Google Scholar] [CrossRef]
- Lim, D.H.; Lim, D.S.; Keum, Y.S. Translocation of polychlorinated biphenyls in carrot-soil systems. Korean J. Pestic. Sci. 2016, 20, 203–210. [Google Scholar] [CrossRef]
- Chiou, C.T.; Sheng, G.; Manes, M. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 2001, 35, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Grieco, F.; Lacertosa, G.; Visconti, A. Chlorpyrifos decline curve and residue levels from different commercial formulations applied to oranges. J. Agric. Food Chem. 2002, 50, 5975–5980. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Kookana, R.S.; Naidu, R. Degradation of bifenthrin, chlorpyifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pestic. Sci. 1999, 55, 1222–1228. [Google Scholar]
- Muir, D.C.G.; Teixeira, C.A.; Alaee, M.; Hermanson, M. Persistent organohalogens and current use pesticides in remote lake waters, sediments, and ice caps. In Persistent Organic Pollutants (POPs) in the European Atmosphere: An Updated Overview; EUR 22876 EN; Institute for Environment and Sustainability, European Commission, Directorate-General, Joint Research Centre, European Commissio: Luxembourg, 2007; pp. 88–95. [Google Scholar]
- Lu, M.X.; Jiang, W.W.; Wang, J.L.; Jian, Q.; Shen, Y.; Liu, X.J.; Yu, X.Y. Persistence and dissipation of chlorpyrifos in brassica chinensis, lettuce, celery, asparagus lettuce, eggplant and pepper in a greenhouse. PLoS ONE 2014, 9, e100556. [Google Scholar] [CrossRef] [PubMed]
- Trapp, S.; McFarlane, C.; Matthies, M. Model for uptake of xenobiotics into plant: Validation with bromacil experiment. Environ. Toxicol. Chem. 1994, 13, 413–422. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Phytoremediation of organic contaminants in soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationship between lipophilicity and root uptake and translocation of nonionized chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [Google Scholar] [CrossRef]
- Trapp, S. Plant Contamination: Modeling and Simulation of Organic Chemical Processes; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A.; Williams, M. Relationship between lipophilicity and the distribution of nonionized chemicals in barley shoots following uptake by the roots. Pestic. Sci. 1983, 14, 492–500. [Google Scholar] [CrossRef]
- Hsu, F.C.; Marxmiller, R.L.; Yang, A.Y.S. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybeans roots using a pressure chamber technique. Plant Physiol. 1990, 93, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Burken, J.G.; Schnoor, J.L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 1998, 32, 3379–3385. [Google Scholar] [CrossRef]
- Jeon, S.O.; Hwang, J.I.; Lee, S.H.; Kim, J.E. Uptake of boscalid and chlorfenapyr residues in soil into Korean cabbage. Korean J. Pestic. Sci. 2014, 18, 314–320. [Google Scholar] [CrossRef]
- Lee, E.H.; Hwang, J.I.; Kim, J.E. Patterns of uptake and removal by processing types of triazole fungicides in onion. Korean J. Pestic. Sci. 2014, 19, 248–254. [Google Scholar] [CrossRef]
- Motoki, Y.; Iwafune, T.; Seike, N.; Otani, T.; Akiyama, Y. Relationship between plant uptake of pesticides and water-extractable residue in Japanese soils. J. Pestic. Sci. 2015, 40, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.; Fryer, M.; Grosso, A. Plant uptake of nonionic organic chemicals. Environ. Sci. Technol. 2006, 40, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, D.L.; McKone, T.E. Predicting the bioconcentration of organic chemicals from soil or air into plants using quantitative structure-activity relationships. Environ. Toxicol. Chem. 1997, 16, 2448–2456. [Google Scholar] [CrossRef]
- Lee, Y.D. Practical Guide for Food Code Pesticide Residue Analysis (Extended Ed.); KFDA: Osong, Korea, 2013.
- Hwang, K.W.; Bang, W.S.; Jo, H.W.; Moon, J.K. Dissipation and removal of the etofenprox residue during processing in spring onion. J. Agric. Food Chem. 2015, 63, 6675–6680. [Google Scholar] [CrossRef] [PubMed]
- McKone, T.E.; Maddalena, R.L. Plant uptake of organic pollutants from soil: Bioconcentration estimates based on models and experiment. Environ. Toxicol. Chem. 2007, 26, 2494–2504. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S. Behavior of pesticides in soil. Korean J. Pestic. Sci. 2010, 14, 303–317. [Google Scholar]
- Stevens, P.J.G.; Baker, E.A. Factors affecting the foliar absorption and redistribution of pesticides. 1. Properties of leaf surfaces and their interactions with spray droplets. Pest Manag. Sci. 1987, 19, 243–252. [Google Scholar] [CrossRef]
- Juraske, R.; Vivas, C.S.M.; Velesquez, A.E.; Santos, G.G.; Moreno, M.B.B.; Gomez, J.D.; Binder, C.R.; Hellweg, S.; Dallos, J.A.D. Pesticide uptake in potatoes: Model and field experiments. Environ. Sci. Technol. 2011, 45, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Lu, M.; Wang, D.; Zhang, Z.; Liu, X.; Yu, X. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake. Chemosphere 2016, 144, 201–206. [Google Scholar] [CrossRef] [PubMed]
Instrument | Shimadzu GC-2010 |
Detector | ECD (electron capture detector) |
Column | DB-5 (0.25 mm × 30 m, 0.25 μm film thickness) |
Oven temperature | 200 °C (2 min); 20 °C/min; 280 °C (5 min) |
Detector temperature | 300 °C |
Injection port temperature | 250 °C |
Gas flow rate | Carrier (N2): 1.3 mL/min; Make up gas (N2): 60.0 mL/min |
Injection mode | Split (20:1) |
Injection volume | 1.0 μL |
Retention time | 4.8 min |
Pesticide | Fortification Level (mg/kg) | Recovery ± CV * (%) | MLOQ ** (mg/kg) | |
---|---|---|---|---|
Chlorpyrifos | 0.2 | Field 1 Soil | 109.1 ± 3.6 | 0.02 |
1.0 | 102.7 ± 0.4 | |||
0.2 | Field 2 Soil | 106.3 ± 3.0 | ||
1.0 | 102.3 ± 1.5 | |||
0.2 | Lettuce | 90.2 ± 2.1 | ||
1.0 | 92.3 ± 4.6 |
Sample (Field 1) | 1.0 mg/kg Treatment | 2.0 mg/kg Treatment | ||
Residue (mg/kg) | CBR * (%) | Residue (mg/kg) | CBR (%) | |
22 DAT ** | 0.04 ± 0.01 | 4.50 ± 0.50 | 0.02 ± 0.01 | 0.66 ± 0.28 |
25 DAT | 0.04 ± 0.01 | 4.33 ± 0.37 | 0.06 ± 0.01 | 2.64 ± 0.12 |
28 DAT | 0.05 ± 0.01 | 5.98 ± 0.58 | 0.12 ± 0.01 | 5.21 ± 0.25 |
32 DAT | 0.02 ± 0.00 | 2.44 ± 0.37 | 0.05 ± 0.01 | 2.24 ± 0.21 |
36 DAT | N.D. | - | N.D. | - |
Sample (Field 2) | 10.0 mg/kg Treatment | 20.0 mg/kg Treatment | ||
Residue (mg/kg) | CBR (%) | Residue (mg/kg) | CBR (%) | |
35 DAT | 1.47 ± 0.20 | 13.26 ± 1.83 | 1.03 ± 0.10 | 4.56 ± 0.43 |
37 DAT | 1.07 ± 0.15 | 9.65 ± 1.33 | 1.11 ± 0.08 | 4.92 ± 0.37 |
39 DAT | 1.10 ± 0.16 | 9.89 ± 1.46 | 0.86 ± 0.06 | 3.81 ± 0.28 |
41 DAT | 0.92 ± 0.20 | 8.26 ± 1.82 | 0.61 ± 0.15 | 2.71 ± 0.66 |
43 DAT | 0.76 ± 0.03 | 6.84 ± 0.29 | 0.66 ± 0.07 | 2.92 ± 0.31 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, K.-W.; Yoo, S.C.; Lee, S.-E.; Moon, J.-K. Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils. Appl. Sci. 2018, 8, 2343. https://doi.org/10.3390/app8122343
Hwang K-W, Yoo SC, Lee S-E, Moon J-K. Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils. Applied Sciences. 2018; 8(12):2343. https://doi.org/10.3390/app8122343
Chicago/Turabian StyleHwang, Kyu-Won, Soo Cheol Yoo, Sung-Eun Lee, and Joon-Kwan Moon. 2018. "Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils" Applied Sciences 8, no. 12: 2343. https://doi.org/10.3390/app8122343
APA StyleHwang, K. -W., Yoo, S. C., Lee, S. -E., & Moon, J. -K. (2018). Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils. Applied Sciences, 8(12), 2343. https://doi.org/10.3390/app8122343