Liquid-Crystal-on-Silicon for Augmented Reality Displays
Abstract
:1. Introduction
2. LCoS Working Principles
2.1. Birefringence Effect of Liquid Crystals
2.2. Vertical Alignment Mode
2.3. Mixed-Mode Twist Nematic (MTN) Mode
2.4. Homogeneous Alignment
2.5. LC Material Optimization Strategies
3. Fringing Field Effect and Novel Solution
3.1. Pretilt Angle Pattern Determining Method
3.2. Exemplary Optimization Results
3.3. Fabrication Method
4. LCoS for Augmented Reality Displays
4.1. Augmented Reality Head-Mounted Displays
4.1.1. Response Time
4.1.2. Resolution
4.2. Augmented Reality Head-Up Displays
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Margerum, J.D.; Nimoy, J.; Wong, S.Y. Reversible ultraviolet imaging with liquid crystals. Appl. Phys. Lett. 1970, 17, 51–53. [Google Scholar] [CrossRef]
- Beard, T.D.; Bleha, W.P.; Wong, S.Y. Ac Liquid-Crystal Light Valve. Appl. Phys. Lett. 1973, 22, 90–92. [Google Scholar] [CrossRef]
- Ernstoff, M.N.; Leupp, A.M.; Little, M.J.; Peterson, H.T. Liquid crystal pictorial display. Int. Electron Devices Meet. 1973, 548–551. [Google Scholar] [CrossRef]
- Efron, U.; Braatz, P.O.; Little, M.J.; Schwartz, R.N.; Grinberg, J. Silicon liquid crystal light valves: Status and issues. Opt. Eng. 1983, 22, 682–686. [Google Scholar] [CrossRef]
- Johnson, K.M.; McKnight, D.J.; Underwood, I. Smart Spatial Light Modulators Using Liquid Crystals on Silicon. IEEE J. Quantum Electron. 1993, 29, 699–714. [Google Scholar] [CrossRef]
- Wu, S.-T.; Wu, C.-S. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl. Phys. Lett. 1996, 68, 1455–1457. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Wei, C.-K.; Wu, S.-T.; Wy, C.-S. Reflective direct-view display using a mixed-mode twisted nematic cell. Jpn. J. Appl. Phys. 1997, 36, 1077–1080. [Google Scholar] [CrossRef]
- Alt, P.M. Single crystal silicon for high resolution displays. In Proceedings of the 17th International Display Research Conference, Toronto, ON, Canada, 15–19 September 1997. M19–M28. [Google Scholar]
- Sterling, R.D.; Bleha, W.P. D-ILA technology for electronic cinema. SID Int. Symp. Dig. Tech. Pap. 2000, 31, 310–313. [Google Scholar] [CrossRef]
- Melcher, R.L. LCoS-microdisplay technology and applications. Inf. Disp. 2000, 16, 20–23. [Google Scholar]
- Cuypers, D.; de Smet, H.; van Calster, A. VAN LCOS microdisplays: A decade of technological evolution. J. Disp. Technol. 2011, 7, 127–134. [Google Scholar] [CrossRef]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 2017, 36, 85. [Google Scholar] [CrossRef]
- Matsuda, N.; Fix, A.; Lanman, D. Focal surface displays. ACM Trans. Graph. 2017, 36, 86. [Google Scholar] [CrossRef]
- Wang, C.; Fu, Q.; Dun, X.; Heidrich, W. Megapixel adaptive optics: Towards Correcting Large-scale Distortions in Computational Cameras. ACM Trans. Graph. 2018, 37, 115. [Google Scholar] [CrossRef]
- Stöhr, J.; Samant, M.G.; Cossy-Favre, A.; Díaz, J.; Momoi, Y.; Odahara, S.; Nagata, T. Microscopic origin of liquid crystal alignment on rubbed polymer surfaces. Macromolecules 1998, 31, 1942–1946. [Google Scholar] [CrossRef]
- Hong, Z.; Zhu, L.; Fu, S.; Tang, M.; Shum, P.; Liu, D. A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS). In Proceedings of the Asia Communications and Photonics Conference, Hong Kong, China, 19–23 November 2015. [Google Scholar]
- Osten, W.; Kohler, C.; Liesener, J. Evaluation and application of spatial light modulators for optical metrology. Óptica Pura y Aplicada 2005, 38, 71–81. [Google Scholar]
- Crossland, W.A.; Wilkinson, T.D.; Manolis, I.G.; Redmond, M.M.; Davey, A.B. Telecommunications applications of LCOS devices. Mol. Cryst. Liq. Cryst. 2002, 375, 1–13. [Google Scholar] [CrossRef]
- Jack, B.; Leach, J.; Ritsch, H.; Barnett, S.M.; Padgett, M.J.; Franke-Arnold, S. Precise quantum tomography of photon pairs with entangled orbital angular momentum. New J. Phys. 2009, 11, 103024. [Google Scholar] [CrossRef] [Green Version]
- Solís-Prosser, M.A.; Arias, A.; Varga, J.J.M.; Rebón, L.; Ledesma, S.; Iemmi, C.; Neves, L. Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator. Opt. Lett. 2013, 38, 4762–4765. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Chang, S.; Zhang, S.; Xie, T.; Li, H.; Liu, S.; Wang, C.; Tao, X.; Zheng, Z. Computer-generated holographic near-eye display system based on LCoS phase only modulator. Proc. SPIE 2017, 10396, 103961J. [Google Scholar] [CrossRef]
- Li, Y.-W.; Lin, C.-W.; Chen, K.-Y.; Fan-Chiang, K.-H.; Kuo, H.-C.; Tsai, H.-C. Front-lit LCOS for wearable applications. SID Int. Symp. Dig. Tech. Pap. 2014, 45, 234–236. [Google Scholar] [CrossRef]
- Moon, E.; Kim, M.; Roh, J.; Kim, H.; Hahn, J. Holographic head-mounted display with RGB light emitting diode light source. Opt. Express 2014, 22, 6526–6534. [Google Scholar] [CrossRef] [PubMed]
- Schiekel, M.F.; Fahrenschon, K. Deformation of nematic liquid crystals with vertical orientation in electrical fields. Appl. Phys. Lett. 1971, 19, 391–393. [Google Scholar] [CrossRef]
- Schadt, M.; Helfrich, W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Lett. 1971, 18, 127–128. [Google Scholar] [CrossRef]
- Schadt, M. Milestone in the history of field-effect liquid crystal displays and materials. Jpn. J. Appl. Phys. 2009, 48, 03B001. [Google Scholar] [CrossRef]
- Stöhr, J.; Samant, M.G.; Lüning, J.; Callegari, A.C.; Chaudhari, P.; Doyle, J.P.; Lacey, J.A.; Lien, S.A.; Purushothaman, S.; Speidell, J.L. Liquid crystal alignment on carbonaceous surfaces with orientational order. Science 2001, 292, 2299–2302. [Google Scholar] [CrossRef] [PubMed]
- Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn. J. Appl. Phys. 1992, 31, 2155–2164. [Google Scholar] [CrossRef]
- Schadt, M.; Seiberle, H.; Schuster, A. Optical patterning of multidomain liquid-crystal displays with wide viewing angles. Lett. Nat. 1996, 381, 212–215. [Google Scholar] [CrossRef]
- Gooch, C.H.; Tarry, H.A. The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees. J. Phys. D Appl. Phys. 1975, 8, 1575–1584. [Google Scholar] [CrossRef]
- Collings, N.; Davey, T.; Christmas, J.; Chu, D.; Crossland, B. The applications and technology of phase-only liquid crystal on silicon devices. J. Disp. Technol. 2011, 7, 112–119. [Google Scholar] [CrossRef]
- Konforti, N.; Marom, E.; Wu, S.-T. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. Opt. Lett. 1988, 13, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-T. Design of a liquid crystal based tunable electrooptic filter. Appl. Opt. 1989, 28, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-T.; Wu, C.-S.; Kuo, C.-L. Reflective direct-view and projection displays using twisted-nematic liquid crystal cells. Jpn. J. Appl. Phys. 1997, 36, 2721–2727. [Google Scholar] [CrossRef]
- Wu, S.-T.; Wu, C.-S. A biaxial film-compensated thin homogeneous cell for reflective liquid crystal display. J. Appl. Phys. 1998, 83, 4096–4100. [Google Scholar] [CrossRef]
- Chen, H.; Hu, M.; Peng, F.; Li, J.; An, Z.; Wu, S.-T. Ultra-low viscosity liquid crystal materials. Opt. Mater. Express 2015, 5, 655–660. [Google Scholar] [CrossRef]
- Kirsch, P.; Hahn, A. Liquid crystals based on hypervalent sulfur fluorides: Exploring the steric effects of ortho-fluorine substituents. Eur. J. Org. Chem. 2005, 2005, 3095–3100. [Google Scholar] [CrossRef]
- Chen, R.; Jiang, Y.; Li, J.; An, Z.; Chen, X.; Chen, P. Dielectric and optical anisotropy enhanced by 1,3-dioxolane terminal substitution on tolane-liquid crystals. J. Mater. Chem. C 2015, 3, 8706–8711. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, L.; An, Z.; Chen, X.; Chen, P. Synthesis and properties of allyloxy-based tolane liquid crystals with high negative dielectric anisotropy. Liq. Cryst. 2017, 44, 2184–2191. [Google Scholar] [CrossRef]
- Kirsch, P.; Bremer, M.; Taugerbeck, A.; Wallmichrath, T. Difluorooxymethylene-bridged liquid crystals: A novel synthesis based on the oxidative alkoxydifluorodesulfuration of dithianylium salts. Angew. Chem. Int. Ed. 2001, 40, 1480–1484. [Google Scholar] [CrossRef]
- Yang, X.; Mo, L.; Hu, M.; Li, J.; Li, J.; Chen, R.; An, Z. New isothiocyanato liquid crystals containing thieno[3,2-b]thiophene central core. Liq. Cryst. 2017, 45, 1294–1302. [Google Scholar] [CrossRef]
- Chen, R.; An, Z.; Li, F.; Chen, X.; Chen, P. Synthesis and physical properties of tolane liquid crystals containing 2,3-difluorophenylene and terminated by a tetrahydropyran moiety. Liq. Cryst. 2016, 43, 564–572. [Google Scholar] [CrossRef]
- Lee, S.H.; Bhattacharyya, S.S.; Jin, H.S.; Jeong, K.U. Devices and materials for high-performance mobile liquid crystal displays. J. Mater. Chem. 2012, 22, 11893–11903. [Google Scholar] [CrossRef]
- Li, J.; Peng, Z.; Chen, R.; Li, J.; Hu, M.; Zhang, L.; An, Z. Investigation of terminal olefine in the isothiocyanatotolane liquid crystals with alkoxy end group. Liq. Cryst. 2018, 45, 1498–1507. [Google Scholar] [CrossRef]
- Gauza, S.; Wang, H.; Wen, C.-H.; Wu, S.-T.; Seed, A.J.; Dabrowski, R. High birefringence isothiocyanato tolane liquid crystals. Jpn. J. Appl. Phys. 2003, 42, 3463–3466. [Google Scholar] [CrossRef]
- Huang, Y.; He, Z.; Wu, S.-T. Fast-response liquid crystal phase modulators for augmented reality displays. Opt. Express 2017, 25, 32757–32766. [Google Scholar] [CrossRef]
- Chen, R.; Huang, Y.; Li, J.; Hu, M.; Li, J.; Chen, X.; Chen, P.; Wu, S. High-frame-rate liquid crystal phase modulator for augmented reality displays. Liq. Cryst. 2018. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, J.; Xianyu, H.; Wu, S.-T.; Liang, X.; Tang, H. High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs. J. Disp. Technol. 2011, 7, 478–481. [Google Scholar] [CrossRef]
- Parri, O.; Wittek, M.; Schroth, D.; Canisius, J. New liquid crystals for light guiding application: From automotive headlights to adaptive indoor lighting. SID Intl. Symp. Dig. Tech. Pap. 2017, 48, 1157–1159. [Google Scholar] [CrossRef]
- Arakawa, Y.; Inui, S.; Tsuji, H. Novel diphenylacetylene-based room-temperature liquid crystalline molecules with alkylthio groups, and investigation of the role for terminal alkyl chains in mesogenic incidence and tendency. Liq. Cryst. 2018, 45, 811–820. [Google Scholar] [CrossRef]
- Chen, R.; An, Z.; Wang, W.; Chen, X.; Chen, P. Improving UV stability of tolane-liquid crystals in photonic applications by the ortho fluorine substitution. Opt. Mater. Express 2016, 6, 97–105. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Hu, M.; Che, Z.; Mo, L.; Yang, X.; An, Z.; Zhang, L. The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals. Liq. Cryst. 2017, 44, 1374–1383. [Google Scholar] [CrossRef]
- Wen, C.-H.; Gauza, S.; Wu, S.-T. Photostability of liquid crystals and alignment layers. J. Soc. Inf. Disp. 2005, 13, 805–811. [Google Scholar] [CrossRef]
- Jiao, M.; Ge, Z.; Song, Q.; Wu, S.-T. Alignment layer effects on thin liquid crystal cells. Appl. Phys. Lett. 2008, 92, 061102. [Google Scholar] [CrossRef]
- Wu, S.-T.; Efron, U. Optical properties of thin nematic liquid crystal cells. Appl. Phys. Lett. 1986, 48, 624–626. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, F.; Wu, S.-T. Submillisecond-response vertical-aligned liquid crystal for color sequential projection displays. J. Soc. Inf. Disp. 2013, 9, 78–81. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, F.; Yamaguchi, T.; Song, X.; Wu, S.-T. High performance negative dielectric anisotropy liquid crystals for display applications. Crystals 2013, 3, 483–503. [Google Scholar] [CrossRef]
- Chen, H.; Gou, F.; Wu, S.-T. Submillisecond-response nematic liquid crystals for augmented reality displays. Opt. Mater. Express 2017, 7, 195–201. [Google Scholar] [CrossRef]
- Peng, F.; Huang, Y.; Gou, F.; Hu, M.; Li, J.; An, Z.; Wu, S.-T. High performance liquid crystals for vehicle displays. Opt. Mater. Express 2016, 6, 717–726. [Google Scholar] [CrossRef]
- Efron, U. Spatial Light Modulator Technology: Materials, Devices, and Applications; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Collings, N.; Pourzand, A.R.; Vladimirov, F.L.; Pletneva, N.I.; Chaika, A.N. Pixelated liquid-crystal light valve for neural network application. Appl. Opt. 1999, 38, 6184–6189. [Google Scholar] [CrossRef] [PubMed]
- Kirzhner, M.G.; Klebanov, M.; Lyubin, V.; Collings, N.; Abdulhalim, I. Liquid crystal high-resolution optically addressed spatial light modulator using a nanodimensional chalcogenide photosensor. Opt. Lett. 2014, 39, 2048–2051. [Google Scholar] [CrossRef] [PubMed]
- Solodar, A.; Kumar, T.A.; Sarusi, G.; Abdulhalim, I. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes. Appl. Phys. Lett. 2016, 108, 021103. [Google Scholar] [CrossRef]
- Shcherbin, K.; Gvozdovskyy, I.; Evans, D.R. Optimization of the liquid crystal light valve for signal beam amplification. Opt. Mater. Express 2016, 6, 3670–3675. [Google Scholar] [CrossRef]
- James, R.; Ferná, F.; Day, S.; Komarčević, M.; William, A. Modelling of high resolution phase spatial light modulators. Mol. Cryst. Liq. Cryst. 2004, 422, 209–217. [Google Scholar] [CrossRef]
- Vanbrabant, P.J.M.; Beeckman, J.; Neyts, K.; James, R.; Fernandez, F.A. Optical analysis of small pixel liquid crystal microdisplays. J. Disp. Technol. 2011, 7, 156–161. [Google Scholar] [CrossRef]
- Cerrolaza, B.; Geday, M.A.; Quintana, X.; Otón, J.M. An optical method for pretilt and profile determination in LCOS VAN displays. J. Disp. Technol. 2011, 7, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Fan-Chiang, K.-H.; Wu, S.-T.; Chen, S.-H. Fringing field effect of the liquid-crystal-on-silicon devices. Jpn. J. Appl. Phys. 2002, 41, 4577–4585. [Google Scholar] [CrossRef]
- Fan-Chiang, K.-H.; Wu, S.-T.; Chen, S.-H. Fringing-field effects on high-resolution liquid crystal microdisplays. J. Disp. Technol. 2005, 1, 304–313. [Google Scholar] [CrossRef]
- Vanbrabant, P.J.M.; Beeckman, J.; Neyts, K.; Willman, E.; Fernandez, F.A. Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment. J. Appl. Phys. 2010, 108, 083104. [Google Scholar] [CrossRef]
- Ji, Y.; Gandhi, J.; Stefanov, M.E. Stefanov Fringe-field effects in reflective CMOS LCD design optimization. SID Intl. Symp. Dig. Tech. Pap. 1999, 30, 750–753. [Google Scholar] [CrossRef]
- Apter, B.; Efron, U.; Bahat-treidel, E. On the fringing-field effect in liquid-crystal beam-steering devices. Appl. Opt. 2004, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Armitage, D.; Underwood, I.; Wu, S.-T. Introduction to Microdisplays; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Chou, W.Y.; Hsu, C.H.; Chang, S.W.; Chiang, H.C.; Ho, T.Y. A novel design to eliminate fringe field effects for liquid crystal on silicon. Jpn. J. Appl. Phys. 2002, 41, 7386–7390. [Google Scholar] [CrossRef]
- Gu, L.; Chen, X.; Jiang, W.; Howley, B.; Chen, R.T. Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings. Appl. Phys. Lett. 2005, 87, 201106. [Google Scholar] [CrossRef]
- Li, Y.-W.; Fan-Chiang, K.-H. Active Matrix Structure and Liquid Crystal Display Panel. U.S. Patent 2015/0002795 A1, 1 January 2015. [Google Scholar]
- Liao, C.-H. Spatial Light Modulator Reducing Fringing Field Effect. CN Patent 106716238 A, 24 May 2017. [Google Scholar]
- Liao, C.-H. Reducing Fringe Field Effect for Spatial Light Modulator. U.S. Patent 2018/0164643 A1, 14 January 2018. [Google Scholar]
- Liao, C.-H. Reducing Fringe Field Effect for Spatial Light Modulator. WO Patent 2018/107517 A1, 21 June 2018. [Google Scholar]
- Tseng, M.C.; Fan, F.; Lee, C.Y.; Murauski, A.; Chigrinov, V.; Kwok, H.S. Tunable lens by spatially varying liquid crystal pretilt angles. J. Appl. Phys. 2011, 109, 083109. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Srivastava, A.K.; Du, T.; Tseng, M.C.; Chigrinov, V.; Kwok, H.S. Low voltage tunable liquid crystal lens. Opt. Lett. 2013, 38, 4116–4119. [Google Scholar] [CrossRef] [PubMed]
- Otón, E.; Escolano, J.M.; Quintana, X.; Otón, J.M.; Geday, M.A. Aligning lyotropic liquid crystals with silicon oxides. Liq. Cryst. 2015, 42, 1069–1075. [Google Scholar] [CrossRef]
- Sun, J.; Wu, S.-T. Recent advances in polymer network liquid crystal spatial light modulators. J. Polym. Sci. Part B Polym. Phys. 2013, 52, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, Y.; Wu, S.-T. Submillisecond-response and scattering-free infrared liquid crystal phase modulators. Opt. Express 2012, 20, 20124–20129. [Google Scholar] [CrossRef] [PubMed]
- Kress, B.; Starner, T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. Proc. SPIE 2013, 8720, 87200A. [Google Scholar] [CrossRef]
- Raffle, H.S.; Wang, C.-J. Heads-Up Display. U.S. Patent 009285877 B2, 15 March 2016. [Google Scholar]
- Zhang, Q.; Liu, Z.; Zhang, W.; Yu, F. Polarization recycling method for light-pipe-based optical engine. Appl. Opt. 2013, 52, 8827–8833. [Google Scholar] [CrossRef] [PubMed]
- Howarth, P.A. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: A review. Ophthalmic Physiol. Opt. 2011, 31, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence—Accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Wann, J.P.; Rushton, S.; Mon-Williams, M. Natural problems for stereoscopic depth perception in virtual environments. Vision Res. 1995, 35, 2731–2736. [Google Scholar] [CrossRef]
- Watt, S.J.; Akeley, K.; Ernst, M.O.; Banks, M.S. Focus cues affect perceived depth. J. Vis. 2005, 5, 834–862. [Google Scholar] [CrossRef] [PubMed]
- Hua, H. Enabling focus cues in head-mounted displays. Proc. IEEE 2017, 105, 805–824. [Google Scholar] [CrossRef]
- Mullins, B.; Greenhalgh, P.; Christmas, J. The holographic future of head up displays. SID Int. Symp. Dig. Tech. Pap. 2017, 48, 886–889. [Google Scholar] [CrossRef]
- Zhang, Z.; You, Z.; Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 2014, 3, e213. [Google Scholar] [CrossRef]
- Fienup, J.R. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng. 1980, 19, 297–305. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, A.; Christmas, J.; Collings, N.; Moore, J.; Crossland, W.A. Aspects of hologram calculation for video frames. J. Opt. A Pure Appl. Opt. 2008, 10, 035302. [Google Scholar] [CrossRef]
- Matusik, W.; Pfister, H. 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 2004, 23, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Peng, F.; Hu, M.; Wu, S.T. Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display. Liq. Cryst. 2015, 42, 1730–1737. [Google Scholar] [CrossRef]
- Wang, C.; Hsu, R. Digital modulation on micro display and spatial light modulator. SID Int. Symp. Dig. Tech. Pap. 2017, 48, 238–241. [Google Scholar] [CrossRef]
- Worley, W.S., III; Hudson, E.L.; Weatherford, W.T.; Chow, W.H. System and Method for Using Compound Data Words to Reduce the Data Phase Difference between Adjacent Pixel Electrodes. U.S. Patent 006151011 A, 21 November 2000. [Google Scholar]
- García-Márquez, J.; López, V.; González-Vega, A.; Noé, E. Flicker minimization in an LCoS spatial light modulator. Opt. Express 2012, 20, 8431–8441. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, G.; Hermerschmidt, A.; Rozhkov, O.V. LC-based phase-modulating spatial light modulators. In Proceedings of the Imaging and Applied Optics, Seattle, WA, USA, 13–17 July 2014. [Google Scholar]
- Martínez, F.J.; Márquez, A.; Gallego, S.; Ortuño, M.; Francés, J.; Beléndez, A.; Pascual, I. Electrical dependencies of optical modulation capabilities in digitally addressed parallel aligned liquid crystal on silicon devices. Opt. Eng. 2014, 53, 067104. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Zhan, T.; Wu, S.-T. Enhancing the resolution of a near-eye display with a Pancharatnam–Berry phase deflector. Opt. Lett. 2017, 42, 4732–4735. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, M.; Hamada, K.; Kondoh, I.; Okano, F.; Haino, Y.; Sato, M.; Doi, K. An ultrahigh-definition display using the pixel-offset method. J. Soc. Inf. Disp. 2004, 12, 93–103. [Google Scholar] [CrossRef]
- Tan, G.; Lee, Y.-H.; Zhan, T.; Yang, J.; Liu, S.; Zhao, D.; Wu, S.-T. Foveated imaging for near-eye displays. Opt. Express 2018, 26, 25076–25085. [Google Scholar] [CrossRef]
- Sterling, R. JVC D-ILA high resolution, high contrast projectors and applications. In Proceedings of the IPT/EDT ‘08, Los Angeles, CA, USA, 9–10 August 2008; ACM: New York, NY, USA, 2008. [Google Scholar]
- Hasebe, H.; Kobayashi, S. A full-color field sequential LCD using modulated backlight. SID Int. Symp. Dig. Tech. Pap. 1985, 16, 81–83. [Google Scholar]
- Huang, Y.P.; Lin, F.C.; Shieh, H.P.D. Eco-displays: The color LCD’s without color filters and polarizers. J. Disp. Technol. 2011, 7, 630–632. [Google Scholar] [CrossRef]
- Zhan, T.; Lee, Y.-H.; Wu, S.-T. High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses. Opt. Express 2018, 26, 4863–4872. [Google Scholar] [CrossRef] [PubMed]
- Gabbard, J.L.; Fitch, G.M.; Kim, H. Behind the glass: Driver challenges and opportunities for AR automotive applications. Proc. IEEE 2014, 102, 124–136. [Google Scholar] [CrossRef]
- Haeuslschmid, R.; Shou, Y.; O’Donovan, J.; Burnett, G.; Butz, A. First steps towards a view management concept for large-sized head-up displays with continuous depth. In Proceedings of the Automotice’UI 16, Ann Arbor, MI, USA, 24–26 October 2016; ACM: New York, NY, USA, 2016; pp. 1–8. [Google Scholar]
- Yoo, H.; Tsimhoni, O.; Watanabe, H.; Green, P.; Shah, R. Display of HUD Warnings to Drivers: Determining an Optimal Location; Technical Reports; UMTRI-99-9; University of Michiagan Transporation Research Institute: Ann Arbor, MI, USA, 1999. [Google Scholar]
- Plavšic, M.; Duschl, M.; Tönnis, M.; Bubb, H.; Klinker, G. Ergonomic design and evaluation of augmented reality based cautionary warnings for driving assistance in urban environments. In Proceedings of the 17th World Congress on Ergonomics, Beijing, China, 9–14 August 2009; Chinese Ergonomics Society: Beijing, China, 2009. [Google Scholar]
- Sato, A.; Kitahara, I.; Kameda, Y.; Ohta, Y. Visual navigation system on windshield head-up display. In Proceedings of the 13th ITS World Congress, London, UK, 8–12 October 2006.
- Chen, H.; Tan, G.; Wu, S.-T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 2017, 25, 33643–33656. [Google Scholar] [CrossRef]
- Peng, F.; Gou, F.; Chen, H.; Huang, Y.; Wu, S.-T. A submillisecond-response liquid crystal for color sequential projection displays. J. Soc. Inf. Disp. 2016, 24, 241–245. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Liao, E.; Chen, R.; Wu, S.-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays. Appl. Sci. 2018, 8, 2366. https://doi.org/10.3390/app8122366
Huang Y, Liao E, Chen R, Wu S-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays. Applied Sciences. 2018; 8(12):2366. https://doi.org/10.3390/app8122366
Chicago/Turabian StyleHuang, Yuge, Engle Liao, Ran Chen, and Shin-Tson Wu. 2018. "Liquid-Crystal-on-Silicon for Augmented Reality Displays" Applied Sciences 8, no. 12: 2366. https://doi.org/10.3390/app8122366
APA StyleHuang, Y., Liao, E., Chen, R., & Wu, S. -T. (2018). Liquid-Crystal-on-Silicon for Augmented Reality Displays. Applied Sciences, 8(12), 2366. https://doi.org/10.3390/app8122366