Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders
Abstract
:1. Introduction
- We propose an unsupervised domain adaptation method for image classification. Our method trains a pair of coupled generative adversarial networks in which the generator has an encoder-decoder structure.
- We force part of the layers in the generator to share weights during training to generate labeled synthetic images, and make the highest level layer decoupled for different high-level representations.
- We introduce a class consistent loss into the GAN training, which is calculated from the output of a stand-alone domain adaptive classifier. It can help the generator to generate more suitable images for domain adaptation.
2. Related Work
3. Proposed Approach
3.1. Image Reconstruction and Autoencoder
3.2. Style Transfer and GAN
3.3. Weight Sharing
3.4. Domain Adapted Classifier
4. Experiment Results and Evaluation
4.1. Facial Expression Recognition
4.2. Office Dataset
4.3. Office-Home Dataset
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Fernando, B.; Habrard, A.; Sebban, M.; Tuytelaars, T. Unsupervised visual domain adaptation using subspace alignment. In Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, NSW, Australia, 1–8 December 2013; pp. 2960–2967. [Google Scholar]
- Gong, B.; Shi, Y.; Sha, F.; Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 2066–2073. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2200–2207. [Google Scholar]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2011, 22, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 97–105. [Google Scholar]
- Shen, C.; Song, R.; Li, J.; Zhang, X.; Tang, J.; Shi, Y.; Liu, J.; Cao, H. Temperature drift modeling of mems gyroscope based on genetic-elman neural network. Mech. Syst. Signal Proc. 2016, 72–73, 897–905. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv, 2014; arXiv:1412.3474. [Google Scholar]
- Ghifary, M.; Kleijn, W.B.; Zhang, M.; Balduzzi, D.; Li, W. Deep reconstruction-classification networks for unsupervised domain adaptation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 597–613. [Google Scholar]
- Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep Hashing Network for Unsupervised Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5385–5394. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of the ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta, GA, USA, 21 June 2013; Volume 3, p. 2. [Google Scholar]
- Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in Vitro. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3754–3762. [Google Scholar]
- Wang, X.; Wang, X.; Ni, Y. Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks. Comput. Intel. Neurosci. 2018, 2018, 7208794. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 469–477. [Google Scholar]
- Liu, M.Y.; Breuel, T.; Kautz, J. Unsupervised image-to-image translation networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 700–708. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Denker, J.S.; Gardner, W.; Graf, H.P.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L.D.; Baird, H.S.; Guyon, I. Neural network recognizer for hand-written zip code digits. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 1989), Denver, CO, USA, 27–30 November 1989; pp. 323–331. [Google Scholar]
- Liu, J.; Li, J.; Lu, K. Coupled local–global adaptation for multi-source transfer learning. Neurocomputing 2018, 275, 247–254. [Google Scholar] [CrossRef]
- Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1180–1189. [Google Scholar]
- Zhang, W.; Ouyang, W.; Li, W.; Xu, D. Collaborative and Adversarial Network for Unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 18–22 June 2018; pp. 3801–3809. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous deep transfer across domains and tasks. In Proceedings of the 2015 IEEE International Conference onComputer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4068–4076. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Mao, X.; Wang, S.; Zheng, L.; Huang, Q. Semantic invariant cross-domain image generation with generative adversarial networks. Neurocomputing 2018, 293, 55–63. [Google Scholar] [CrossRef]
- Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 95–104. [Google Scholar]
- Kiasari, M.A.; Moirangthem, D.S.; Lee, M. Coupled generative adversarial stacked Auto-encoder: CoGASA. Neural Netw. 2018, 100, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv, 2013; arXiv:1312.6114. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1558–1566. [Google Scholar]
- Lyons, M.J.; Budynek, J.; Akamatsu, S. Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.; Akamatsu, S.; Kamachi, M.; Gyoba, J. Coding facial expressions with gabor wavelets. In Proceedings of the 1998 IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998; pp. 200–205. [Google Scholar]
- Valstar, M.; Pantic, M. Induced disgust, happiness and surprise: An addition to the mmi facial expression database. In Proceedings of the 3rd International Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect, Valletta, Malta, 23 May 2010; pp. 65–70. [Google Scholar]
- Pantic, M.; Valstar, M.; Rademaker, R.; Maat, L. Web-based database for facial expression analysis. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2005), Amsterdam, The Netherlands, 6 July 2005; p. 5. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245. [Google Scholar]
- Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting visual category models to new domains. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2010; pp. 213–226. [Google Scholar]
Training Method | Decoupled Layers | J→M | M→J | C→M | M→C | J→C | C→J | ||
---|---|---|---|---|---|---|---|---|---|
D | |||||||||
Source | 0.330 | 0.362 | 0.428 | 0.697 | 0.634 | 0.437 | |||
UNIT | − | − | − | 0.507 | 0.470 | 0.567 | 0.719 | 0.733 | 0.526 |
CGAA | √ | √ | − | 0.521 | 0.460 | 0.581 | 0.736 | 0.744 | 0.559 |
√ | √ | √ | 0.521 | 0.498 | 0.581 | 0.736 | 0.769 | 0.573 |
Training Method | A→W | W→A | W→D | D→W | A→D | D→A |
---|---|---|---|---|---|---|
Source | 0.670 | 0.498 | 0.952 | 0.941 | 0.689 | 0.515 |
DDC | 0.594 | − | 0.917 | 0.925 | − | − |
DAN | 0.685 | 0.531 | 0.990 | 0.960 | 0.670 | 0.540 |
DAH | 0.683 | 0.530 | 0.988 | 0.961 | 0.665 | 0.555 |
DRCN | 0.687 | 0.549 | 0.990 | 0.964 | 0.668 | 0.560 |
DANN | 0.730 | − | 0.992 | 0.964 | − | − |
RTN | 0.733 | 0.510 | 0.996 | 0.968 | 0.710 | 0.505 |
ADDA | 0.751 | − | 0.996 | 0.970 | − | − |
CoGAN | 0.745 | 0.549 | 0.996 | 0.968 | 0.710 | 0.560 |
UNIT | 0.751 | 0.566 | 0.992 | 0.968 | 0.715 | 0.568 |
CGAA | 0.752 | 0.575 | 0.996 | 0.957 | 0.723 | 0.572 |
Method | A→C | A→P | A→R | C→A | C→P | C→R | P→A | P→C | P→R | R→A | R→C | R→P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAN 1 | 0.307 | 0.422 | 0.541 | 0.328 | 0.476 | 0.498 | 0.291 | 0.341 | 0.567 | 0.436 | 0.383 | 0.627 |
DANN 1 | 0.333 | 0.430 | 0.544 | 0.322 | 0.491 | 0.498 | 0.305 | 0.381 | 0.568 | 0.447 | 0.427 | 0.647 |
DAH | 0.316 | 0.408 | 0.517 | 0.347 | 0.519 | 0.528 | 0.299 | 0.396 | 0.607 | 0.450 | 0.451 | 0.625 |
CoGAN | 0.399 | 0.545 | 0.672 | 0.471 | 0.570 | 0.579 | 0.478 | 0.406 | 0.635 | 0.580 | 0.489 | 0.728 |
UNIT | 0.404 | 0.554 | 0.670 | 0.480 | 0.572 | 0.583 | 0.509 | 0.412 | 0.658 | 0.599 | 0.503 | 0.726 |
CGAA | 0.434 | 0.571 | 0.676 | 0.499 | 0.577 | 0.591 | 0.517 | 0.435 | 0.662 | 0.612 | 0.517 | 0.749 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, X. Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders. Appl. Sci. 2018, 8, 2529. https://doi.org/10.3390/app8122529
Wang X, Wang X. Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders. Applied Sciences. 2018; 8(12):2529. https://doi.org/10.3390/app8122529
Chicago/Turabian StyleWang, Xiaoqing, and Xiangjun Wang. 2018. "Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders" Applied Sciences 8, no. 12: 2529. https://doi.org/10.3390/app8122529
APA StyleWang, X., & Wang, X. (2018). Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders. Applied Sciences, 8(12), 2529. https://doi.org/10.3390/app8122529