Metrology of Nanostructures by Tomographic Mueller-Matrix Scatterometry
Abstract
:1. Introduction
2. Experimental Setup
3. Methods
3.1. Inverse Modeling
3.2. Pitch Measurement
4. Results and Discussion
4.1. Sample Description
4.2. Measurement of the Grating Pitch
4.3. Measurement of Grating Structural Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, F.Z.; Zhang, X.D.; Gao, W.; Guo, Y.B.; Byrne, G.; Hansen, H.N. Nanomanufacturing—Perspective and applications. CIRP Ann. Manuf. Technol. 2017, 66, 683–705. [Google Scholar] [CrossRef] [Green Version]
- Postek, M.T.; Lyons, K. Instrumentation, metrology, and standards: Key elements for the future of nanomanufacturing. Proc. SPIE 2007, 6648, 664802. [Google Scholar]
- Raymond, C.J. Scatterometry for semiconductor metrology. In Handbook of Silicon Semiconductor Metrology; Diebold, A.C., Ed.; CRC Press: Boca Raton, FL, USA, 2001; Chapter 18. [Google Scholar]
- Huang, H.T.; Kong, W.; Terry, F.L., Jr. Normal-incidence spectroscopic ellipsometry for critical dimension monitoring. Appl. Phys. Lett. 2001, 78, 3983–3985. [Google Scholar] [CrossRef]
- Wurm, M.; Endres, J.; Probst, J.; Schoengen, M.; Diener, A.; Bodermann, B. Metrology of nanoscale grating structures by UV scatterometry. Opt. Express 2017, 25, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Novikova, T.; De Martino, A.; Bulkin, P.; Nguyen, Q.; Drévillon, B.; Popov, V.; Chumakov, A. Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction. Opt. Express 2007, 15, 2033–2046. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.N.; Paek, J.S.; Rabello, S.; Lee, S.; Hu, J.; Liu, Z.; Hao, Y.; McGahan, W. Device based in-chip critical dimension and overlay metrology. Opt. Express 2009, 17, 21336–21343. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, X.; Zhang, C. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films 2015, 584, 176–185. [Google Scholar] [CrossRef]
- Diebold, A.C.; Antonelli, A.; Keller, N. Perspective: Perspective: Optical measurement of feature dimensions and shapes by scatterometry. APL Mater. 2018, 6, 058201. [Google Scholar] [CrossRef]
- Bundary, B.; Solecky, E.; Vaid, A.; Bello, A.F.; Dai, X. Metrology capabilities and needs for 7 nm and 5 nm logic nodes. Proc. SPIE 2017, 10145, 101450G. [Google Scholar]
- Orji, N.G.; Badaroglu, M.; Barnes, B.M.; Beitia, C.; Bunday, B.D.; Celano, U.; Kline, R.J.; Neisser, M.; Obeng, Y.; Vladar, A.E. Metrology for the next generation of semiconductor devices. Nat. Electron. 2018, 1, 532–547. [Google Scholar] [CrossRef]
- Germer, T.A.; Asmail, C.C. Goniometric optical scatter instrument for out-of-plane ellipsometry measurements. Rev. Sci. Instrum. 1999, 70, 3688–3695. [Google Scholar] [CrossRef]
- Liu, C.Y.; Liu, T.A.; Fu, W.E. Out-of-plane ellipsometry measurements of nanoparticles on surfaces for thin film coated wafer inspection. Opt. Laser Technol. 2010, 42, 902–910. [Google Scholar] [CrossRef]
- Maria, J.; Aas, L.M.S.; Kildemo, M. In and out of incidence plane Mueller matrix scattering ellipsometry of rough mc-Si. Thin Solid Films 2014, 571, 399–404. [Google Scholar] [CrossRef]
- Attota, R.; Germer, T.A.; Silver, R.M. Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis. Opt. Lett. 2008, 33, 1990–1992. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.M.; Barnes, B.M.; Attota, R.; Jun, J.; Stocker, M.; Marx, E.; Patrick, H.J. Scatterfield microscopy for extending the limits of image-based optical metrology. Appl. Opt. 2007, 46, 4248–4257. [Google Scholar] [CrossRef] [PubMed]
- Maire, G.; Drsek, F.; Girard, J.; Giovannini, H.; Talneau, A.; Konan, D.; Belkebir, K.; Chaumet, P.C.; Sentenac, A. Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography. Phys. Rev. Lett. 2009, 102, 213905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ruan, Y.; Maire, G.; Sentenac, D.; Talneau, A.; Belkebir, K.; Chaunet, P.C.; Sentenac, A. Full-polarized tomographic diffraction microscopy achieves a resolution about one-fourth of the wavelength. Phys. Rev. Lett. 2013, 111, 243904. [Google Scholar] [CrossRef] [PubMed]
- Boher, P.; Petit, J.; Leroux, T.; Foucher, J.; Desieres, Y.; Hazart, J.; Chaton, P. Optical Fourier transform scatterometry for LER and LWR metrology. Proc. SPIE 2005, 5752, 594526. [Google Scholar]
- Petrik, P.; Kumar, N.; Fried, M.; Fodor, B.; Urbach, H.P. Fourier ellipsometry—An ellipsometric approach to Fourier scatterometry. J. Eur. Opt. Soc. Rapid 2015, 10, 15002. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, C.; Chen, X.; Du, W.; Gu, H.; Liu, S. Development of a tomographic Mueller-matrix scatterometer for nanostructure metrology. Rev. Sci. Instrum. 2018, 89, 073702. [Google Scholar] [CrossRef]
- Li, J.; Ramanujam, B.; Collins, R.W. Dual rotating compensator ellipsometry: Theory and simulations. Thin Solid Films 2011, 519, 2725–2729. [Google Scholar] [CrossRef]
- Moharam, M.G.; Grann, E.B.; Pommet, D.A.; Gaylord, T.K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Liu, S. Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry. Appl. Phys. Lett. 2013, 103, 151605. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipies: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; Chapter 15. [Google Scholar]
- Chernoff, D.A.; Buhr, E.; Burkhead, D.L.; Diener, A. Picometer-scale accuracy in pitch metrology by optical diffraction and atomic force microscopy. Proc. SPIE 2008, 6922, 69223J. [Google Scholar]
- Herzinger, C.M.; Johs, B.; McGahan, W.A.; Woollam, J.A.; Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 1998, 83, 3323–3336. [Google Scholar] [CrossRef] [Green Version]
- Jellison, G.E., Jr.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Meneses, D.D.S.; Malki, M.; Echegut, P. Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. J. Non-Cryst. Solids 2006, 352, 769–776. [Google Scholar] [CrossRef]
- Ferlauto, A.S.; Ferreira, G.M.; Pearce, J.M.; Wronski, C.R.; Collins, R.W.; Deng, X.; Ganguly, G. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 2002, 92, 2424–2436. [Google Scholar] [CrossRef]
- Synowicki, R.A. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 1998, 313, 394–397. [Google Scholar] [CrossRef]
- Gil, J.J.; Bernabeu, E. Depolarization and polarization indices of an optical system. Opt. Acta Int. J. Opt. 1986, 33, 185–189. [Google Scholar] [CrossRef]
- Ben Hatit, S.; Foldyna, M.; De Martino, A.; Drévillon, B. Angle-resolved Mueller polarimeter using a microscope objective. Phys. Status Solidi A 2008, 205, 743–747. [Google Scholar] [CrossRef]
- Chen, X.; Du, W.; Yuan, K.; Chen, J.; Jiang, H.; Zhang, C.; Liu, S. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology. Rev. Sci. Instrum. 2016, 87, 053707. [Google Scholar] [CrossRef] [PubMed]
Parameter | Nominal Value | TMS | MME | SEM | |
---|---|---|---|---|---|
Before Correction | After Correction | ||||
x1 (nm) | 200 | 206.1 | 204.2 | 204.7 | 203.4 |
x2 (nm) | 311 | 343.5 | 295.8 | 294.5 | 303.7 |
x3 (deg) | 90 | 88.9 | 89.2 | 89.7 | 89.5 |
x4 (nm) | — | 53.3 | 54.3 | 52.1 | — |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chen, X.; Shi, Y.; Gu, H.; Jiang, H.; Liu, S. Metrology of Nanostructures by Tomographic Mueller-Matrix Scatterometry. Appl. Sci. 2018, 8, 2583. https://doi.org/10.3390/app8122583
Chen C, Chen X, Shi Y, Gu H, Jiang H, Liu S. Metrology of Nanostructures by Tomographic Mueller-Matrix Scatterometry. Applied Sciences. 2018; 8(12):2583. https://doi.org/10.3390/app8122583
Chicago/Turabian StyleChen, Chao, Xiuguo Chen, Yating Shi, Honggang Gu, Hao Jiang, and Shiyuan Liu. 2018. "Metrology of Nanostructures by Tomographic Mueller-Matrix Scatterometry" Applied Sciences 8, no. 12: 2583. https://doi.org/10.3390/app8122583
APA StyleChen, C., Chen, X., Shi, Y., Gu, H., Jiang, H., & Liu, S. (2018). Metrology of Nanostructures by Tomographic Mueller-Matrix Scatterometry. Applied Sciences, 8(12), 2583. https://doi.org/10.3390/app8122583