Repeater Insertion for Multi-Walled Carbon Nanotube Interconnects
Abstract
:1. Introduction
2. ESC Model of the MWCNT Interconnect
3. Repeater Insertion
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Davis, J.A.; Venkatesan, R.; Kaloyeros, A.; Beylansky, M.; Souri, S.J.; Benerjee, K.; Saraswat, K.C.; Rahman, A.; Reif, R.; Meindl, J.D. Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 2001, 89, 305–324. [Google Scholar] [CrossRef]
- International Technology Roadmap for Semiconductors, Edition 2013. Available online: http://www.itrs2.net/ (accessed on 1 August 2017).
- Li, H.; Xu, C.; Srivastava, N.; Banerjee, K. Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects. IEEE Trans. Electron Devices 2009, 56, 1799–1821. [Google Scholar] [CrossRef]
- Zhao, W.S.; Yin, W.Y. Carbon-based interconnects for RF nanoelectronics. Wiley Encycl. Electr. Electron. Eng. 2012, 1–20. [Google Scholar] [CrossRef]
- Close, G.F.; Wong, H.S.P. Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans. Nanotechnol. 2008, 7, 596–600. [Google Scholar] [CrossRef]
- Maffucci, A.; Miano, G. Electrical properties of graphene for interconnect applications. Appl. Sci. 2014, 4, 305–317. [Google Scholar] [CrossRef]
- Zhao, W.S.; Yin, W.Y. Comparable study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 2014, 56, 638–645. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Zhao, W.S.; Dong, L.; Wang, J.; Zhao, P.; Gao, H.; Wang, G. Investigation of copper-carbon nanotube composites as global VLSI interconnects. IEEE Trans. Nanotechnol. 2017, 16, 891–900. [Google Scholar] [CrossRef]
- Todri-Sanial, A.; Dijon, J.; Maffucci, A. Carbon Nanotubes for Interconnects; Springer: Zurich, Switwerland, 2017. [Google Scholar]
- Chiariello, A.G.; Maffucci, A.; Miano, G. Circuit models of carbon-based interconnects for nanopackaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1926–1937. [Google Scholar] [CrossRef]
- Maffucci, A.; Micciulla, F.; Cataldo, A.E.; Miano, G.; Bellucci, S. Modeling, fabrication, and characterization of large carbon nanotube interconnects with negative temperature coefficient of the resistance. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 485–493. [Google Scholar] [CrossRef]
- Naeemi, A.; Meindl, J.D. Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett. 2006, 27, 338–340. [Google Scholar] [CrossRef]
- Li, H.; Yin, W.Y.; Banerjee, K.; Mao, J.F. Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 2008, 55, 1328–1337. [Google Scholar] [CrossRef]
- Sarto, M.S.; Tamburrano, A. Single-conductor transmission-line model of multiwall carbon nanotubes. IEEE Trans. Nanotechnol. 2010, 9, 82–92. [Google Scholar] [CrossRef]
- Forestiere, C.; Maffucci, A.; Maksimenko, S.A.; Miano, G.; Slepyan, G.Y. Transmission Line model for multiwall carbon nanotubes with intershell tunneling. IEEE Trans. Nanotechnol. 2012, 11, 554–564. [Google Scholar] [CrossRef]
- Tang, M.; Mao, J. Modeling and fast simulation of multiwalled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 2015, 57, 232–240. [Google Scholar] [CrossRef]
- Lamberti, P.; Sarto, M.S.; Tucci, V.; Tamburrano, A. Robust design of high-speed interconnects based on an MWCNT. IEEE Trans. Nanotechnol. 2012, 11, 799–807. [Google Scholar] [CrossRef]
- D’Amore, M.; Sarto, M.S.; Tamburrano, A. Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 2010, 52, 496–503. [Google Scholar] [CrossRef]
- Liang, F.; Wang, G. Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 2012, 54, 133–139. [Google Scholar] [CrossRef]
- Liang, F.; Wang, G.; Ding, W. Estimation of time delay and repeater insertion in multiwall carbon nanotube interconnects. IEEE Trans. Electron Devices 2011, 58, 2712–2720. [Google Scholar] [CrossRef]
- Franklin, D.; Chen, Z. Length scaling of carbon-nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Hazeghi, A.; Takei, K.; Chen, H.Y.; Chan, P.C.H.; Javey, A.; Wong, H.S.P. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Devices 2012, 59, 12–19. [Google Scholar] [CrossRef]
- Zhao, W.S.; Wang, G.; Sun, L.L.; Yin, W.Y.; Guo, Y.X. Repeater insertion for carbon nanotube interconnects. Micro Nano Lett. 2014, 9, 337–339. [Google Scholar] [CrossRef]
- Plombon, J.J.; Obrien, K.P.; Gstrein, F.; Dubin, V.M.; Jiao, Y. High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 063106. [Google Scholar] [CrossRef]
- Li, H.J.; Lu, W.G.; Li, J.J.; Bai, X.D.; Gu, C.Z. Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 95, 086601. [Google Scholar] [CrossRef] [PubMed]
- Forestiere, C.; Maffucci, A.; Miano, G. On the evaluation of the number of conducting channels in multiwall carbon nanotubes. IEEE Trans. Nanotechnol. 2011, 10, 1221–1223. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Z.; Yang, Y.; Ding, R. Analysis of propagation delay and repeater insertion in single-walled carbon nanotube bundle interconnects. Microelectron. J. 2016, 54, 85–92. [Google Scholar] [CrossRef]
- Venkatesan, R.; Davis, J.D.; Meindl, J.D. Compact distributed RLC interconnect models—Part IV: Unified models for time delay, crosstalk, and repeater insertion. IEEE Trans. Electron Devices 2003, 50, 1094–1102. [Google Scholar] [CrossRef]
- Ismail, Y.I.; Friedman, E.G. Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. Very Large Scale Integr. Syst. 2000, 8, 195–206. [Google Scholar] [CrossRef]
- Li, N.C.; Haviland, G.L.; Tuszynski, A.A. CMOS tapered buffer. IEEE J. Solid State Circuits 1990, 25, 1005–1008. [Google Scholar] [CrossRef]
- Saini, S. Low Power Interconnect Design; Springer: New York, NY, USA, 2017. [Google Scholar]
- Adler, V.; Friedman, E.G. Repeater design to reduce delay and power in resistive interconnect. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1998, 45, 607–616. [Google Scholar] [CrossRef]
- Banerjee, K.; Mehrotra, A. A power-optimal repeater insertion methodology for global interconnects in nanometer designs. IEEE Trans. Electron Devices 2002, 49, 2001–2007. [Google Scholar] [CrossRef]
- Chen, G.; Friedman, E.G. Low-power repeaters driving RC and RLC interconnects with delay and bandwidth constraints. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 161–172. [Google Scholar] [CrossRef]
Technology Node | 14 nm | 7 nm | |
---|---|---|---|
Intermediate | Width (nm) | 14 | 7 |
Aspect ratio | 2.1 | 2.3 | |
Dielectric thickness (nm) | 26.6 | 13.3 | |
Cu resistivity () 1 | 7.43 | 11.41 | |
for Cu () | 130.8 | 110.3 | |
for MWCNT () | 115.8 | 92.4 | |
Global | Width (nm) | 21 | 11 |
Aspect ratio | 2.34 | 2.34 | |
Dielectric thickness (nm) | 31.5 | 16.5 | |
Cu resistivity () | 6.11 | 8.97 | |
for Cu () | 143.6 | 115 | |
for MWCNT () 2 | 124.2 | 99.7 | |
Minimum sized gate | Output resistance () | 30.3 | 69.7 |
Input capacitance () | 0.22 | 0.13 | |
Relative permittivity of the ILD | 2.0 | 1.6 |
Type | MWCNT 1 | MWCNT 2 | MWCNT 3 |
---|---|---|---|
() | 1 | 10 | 10 |
() | 8 | 8 | 60 |
14 nm Node | Cu | MWCNT 1 | MWCNT 2 | MWCNT 3 |
Simulated | 44 | 21 | 12 | 11 |
Estimated | 43 | 19 | 11 | 9 |
Estimated | 10 | 17 | 10 | 10 |
(ns) | 0.974 | 0.651 | 1.538 | 1.522 |
7 nm Node | Cu | MWCNT 1 | MWCNT 2 | MWCNT 3 |
Simulated | 83 | 36 | 24 | 25 |
Estimated | 79 | 31 | 24 | 19 |
Estimated | 8 | 12 | 11 | 7 |
(ns) | 2.473 | 1.303 | 1.865 | 1.890 |
14 nm Node | Cu | MWCNT 1 | MWCNT 2 | MWCNT 3 |
Simulated | 53 | 22 | 11 | 10 |
Estimated | 51 | 19 | 12 | 9 |
Estimated | 18 | 25 | 14 | 14 |
(ns) | 1.172 | 0.678 | 2.067 | 2.038 |
7 nm Node | Cu | MWCNT 1 | MWCNT 2 | MWCNT 3 |
Simulated | 95 | 41 | 25 | 23 |
Estimated | 91 | 37 | 25 | 20 |
Estimated | 14 | 22 | 17 | 15 |
(ns) | 2.828 | 1.562 | 2.776 | 2.758 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.-W.; Cheng, Z.-H.; Zhao, W.-S.; Lu, Q.; Zhu, Z.; Wang, G. Repeater Insertion for Multi-Walled Carbon Nanotube Interconnects. Appl. Sci. 2018, 8, 236. https://doi.org/10.3390/app8020236
Liu P-W, Cheng Z-H, Zhao W-S, Lu Q, Zhu Z, Wang G. Repeater Insertion for Multi-Walled Carbon Nanotube Interconnects. Applied Sciences. 2018; 8(2):236. https://doi.org/10.3390/app8020236
Chicago/Turabian StyleLiu, Peng-Wei, Zi-Han Cheng, Wen-Sheng Zhao, Qijun Lu, Zhangming Zhu, and Gaofeng Wang. 2018. "Repeater Insertion for Multi-Walled Carbon Nanotube Interconnects" Applied Sciences 8, no. 2: 236. https://doi.org/10.3390/app8020236
APA StyleLiu, P. -W., Cheng, Z. -H., Zhao, W. -S., Lu, Q., Zhu, Z., & Wang, G. (2018). Repeater Insertion for Multi-Walled Carbon Nanotube Interconnects. Applied Sciences, 8(2), 236. https://doi.org/10.3390/app8020236