Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation
Abstract
:1. Introduction
2. Formulation of the Problem
3. Solution Procedure
4. Results and Discussions
5. Conclusions
- The increment in dimensionless curvature (i.e., decreasing ) and nanoparticle volume fraction Φ significantly enhances the fluid velocity. Moreover, velocity dominates for multi-walled carbon nanotubes.
- An increment in temperature along with thermal boundary layer has been observed for increasing dimensionless curvature (i.e., decreasing ), nanoparticle volume fraction Φ and radiation parameter Rd. Furthermore, SWCNTs remains on the higher side as compared to MWCNTs.
- An upsurge in temperature has been perceived for increasing heat generation parameter while the opposite behavior has been detected for increasing heat absorption parameter .
- A decline is observed in the magnitude of pressure distribution inside the boundary layer as the dimensionless radius of curvature increases while a rise in nanoparticle volume fraction depicts a clear enhancement in it.
- Skin friction enhances for higher values of solid volume fraction Φ while dimensionless radius of curvature κ implies a reduction in skin friction coefficient for both SWCNTs and MWCNTs.
- The magnitude of local heat flux rate increases for growing values of dimensionless curvature (i.e., decreasing ), nanoparticle volume fraction Φ and radiation parameter Rd while the behavior is opposite for increasing heat generation parameter λ.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Constant | |
Dimensionless radius of curvature | |
Thermal conductivity, | |
Radiation parameter | |
Specific heat at constant pressure, | |
Pressure | |
Dimensionless pressure | |
Prandtl number | |
Volumetric rate of heat source | |
Radiative heat flux, | |
Wall heat flux, | |
Radius of curvature | |
Local Reynold number | |
Local Nusselt number | |
Local fluid temperature, | |
Surface temperature, | |
Free stream temperature, | |
component of velocity, | |
component of velocity, | |
Greek Symbols | |
Solid volume fraction of CNT | |
Similarity variable | |
Dynamic viscosity, | |
Kinematic viscosity, | |
Density, | |
Thermal diffusivity, | |
Heat capacitance | |
Dimensionless temperature | |
Heat generation parameter | |
Wall shear stress | |
Stefan–Boltzmann constant | |
Mean absorption coefficient | |
Subscripts | |
Nanofluid | |
Base fluid | |
Carbon nanotube | |
Single walled | |
Multi walled |
References
- Nnanna, A.G.A. Experimental model of temperature-driven nanofluids. J. Heat Transf. 2007, 129, 697–704. [Google Scholar] [CrossRef]
- Gu, B.; Hou, B.; Lu, Z.; Wang, Z.; Chen, S. Thermal conductivity of nanofluids containing high aspect ratio fillers. Int. J. Heat Mass Transf. 2013, 64, 108–114. [Google Scholar] [CrossRef]
- Milanese, M.; Iacobazzi, F.; Colangelo, G.; De Risi, A. An investigation of layering phenomenon at the liquid-solid interface in Cu and CuO based nanofluids. Int. J. Heat Mass Transf. 2016, 103, 564–571. [Google Scholar] [CrossRef]
- Iacobazzi, F.; Milanese, M.; Colangelo, G.; Lomascolo, M.; De Risi, A. An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid. Energy 2016, 116, 786–794. [Google Scholar] [CrossRef]
- Colangelo, G.; Milanese, M.; De Risi, A. Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector: Influence of nanoparticles concentration. Therm. Sci. 2016, 2016, 2769–2779. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non Newton. Flows 1995, 231, 99–105. [Google Scholar]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 3rd ed.; Oxford University Press: Oxford, UK, 1904. [Google Scholar]
- Xue, Q.Z. Model for thermal conductivity of carbon nanotube-based composites. Phys. B Condens. Matter 2005, 368, 302–307. [Google Scholar] [CrossRef]
- Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Kandelousi, M.S.; Ellahi, R. Simulation of Ferrofluid Flow for Magnetic Drug Targeting Using the Lattice Boltzmann Method. J. Z. Naturforschung A 2015, 70, 115–124. [Google Scholar] [CrossRef]
- Akbar, N.S.; Raza, M.; Ellahi, R. Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J. Magn. Magn. Mater. 2015, 381, 405–415. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D.; Younus Javed, M.; Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 2015, 374, 36–43. [Google Scholar] [CrossRef]
- Rashidi, S.; Dehghan, M.; Ellahi, R.; Riaz, M.; Jamal-Abad, M.T. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. J. Magn. Magn. Mater. 2015, 378, 128–137. [Google Scholar] [CrossRef]
- Mabood, F.; Khan, W.A.; Ismail, A.I.M. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magn. Magn. Mater. 2015, 374, 569–576. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T.; Zaidi, Z.A.; Khan, U.; Ahmed, N. On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp. Sci. Technol. 2015, 46, 514–522. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T.; Khan, U.; Ahmed, N.; Hassan, S. Magnetohydrodynamic Flow and Heat Transfer of Nanofluids in Stretchable Convergent/Divergent Channels. Appl. Sci. 2015, 5, 1639–1664. [Google Scholar] [CrossRef]
- Khan, U.; Ahmed, N.; Mohyud-Din, S.T. Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem. Eng. Sci. 2016, 141, 17–27. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: Singapore, 2001. [Google Scholar]
- Endo, M.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Applications of carbon nanotubes in the twenty–first century. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2223–2238. [Google Scholar] [CrossRef] [PubMed]
- Murshed, S.M.S.; Nieto de Castro, C.A.; Lourenço, M.J.V.; Lopes, M.L.M.; Santos, F.J.V. A review of boiling and convective heat transfer with nanofluids. Renew. Sustain. Energy Rev. 2011, 15, 2342–2354. [Google Scholar] [CrossRef]
- Akbar, N.S.; Butt, A.W. CNT suspended nanofluid analysis in a flexible tube with ciliated walls. Eur. Phys. J. Plus 2014, 129, 174. [Google Scholar] [CrossRef]
- Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Noor, N.F.M. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys. B Condens. Matter 2015, 457, 40–47. [Google Scholar] [CrossRef]
- Ahmed, N.; Mohyud-Din, S.T.; Hassan, S.M. Flow and heat transfer of nanofluid in an asymmetric channel with expanding and contracting walls suspended by carbon nanotubes: A numerical investigation. Aerosp. Sci. Technol. 2016, 48, 53–60. [Google Scholar] [CrossRef]
- Khan, U.; Ahmed, N.; Mohyud-Din, S.T. Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: A numerical study. Neural Comput. Appl. 2017, 28, 37–46. [Google Scholar] [CrossRef]
- Sakiadis, B.C. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961, 7, 26–28. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- McLeod, J.B.; Rajagopal, K.R. On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary. Arch. Ration. Mech. Anal. 1987, 98, 385–393. [Google Scholar] [CrossRef]
- Gupta, P.S.; Gupta, A.S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 1977, 55, 744–746. [Google Scholar] [CrossRef]
- Brady, J.F.; Acrivos, A. Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow. J. Fluid Mech. 1981, 112, 127–150. [Google Scholar] [CrossRef]
- Wang, C.Y. The three-dimensional flow due to a stretching flat surface. Phys. Fluids 1984, 27, 1915–1917. [Google Scholar] [CrossRef]
- Wang, C.Y. Fluid flow due to a stretching cylinder. Phys. Fluids 1988, 31, 466–468. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Aly, A.M.; Mansour, M.A. Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chem. Eng. Commun. 2010, 197, 846–858. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Uddin, M.S. Reactive Solute Diffusion in Boundary Layer Flow through a Porous Medium over a Permeable Flat Plate with Power-Law Variation in Surface Concentration. J. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Vishnu Ganesh, N.; Abdul Hakeem, A.K.; Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq. 2014, 198, 234–238. [Google Scholar] [CrossRef]
- Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Akbar, N.S. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys. E Low Dimens. Syst. Nanostruct. 2015, 65, 17–23. [Google Scholar] [CrossRef]
- Malvandi, A.; Hedayati, F.; Nobari, M.R.H. An HAM Analysis of Stagnation-Point Flow of a Nanofluid over a Porous Stretching Sheet with Heat Generation. J. Appl. Fluid Mech. 2014, 7, 135–145. [Google Scholar]
- Tsai, R.; Huang, K.H.; Huang, J.S. Flow and heat transfer over an unsteady stretching surface with non-uniform heat source. Int. Commun. Heat Mass Transf. 2008, 35, 1340–1343. [Google Scholar] [CrossRef]
- Pal, D. Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady stretching permeable surface. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1890–1904. [Google Scholar] [CrossRef]
- Sajid, M.; Ali, N.; Javed, T.; Abbas, Z. Stretching a Curved Surface in a Viscous Fluid. Chin. Phys. Lett. 2010, 27, 24703. [Google Scholar] [CrossRef]
- Abbas, Z.; Naveed, M.; Sajid, M. Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng. Thermophys. 2013, 22, 337–345. [Google Scholar] [CrossRef]
- Abbas, Z.; Naveed, M.; Sajid, M. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J. Mol. Liq. 2016, 215, 756–762. [Google Scholar] [CrossRef]
- Rosca, N.C.; Pop, I. Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. Eur. J. Mech.—B/Fluids 2015, 51, 61–67. [Google Scholar] [CrossRef]
- Naveed, M.; Abbas, Z.; Sajid, M. MHD flow of Micropolar fluid due to a curved stretching sheet with thermal radiation. J. Appl. Fluid Mech. 2016, 9, 131–138. [Google Scholar] [CrossRef]
- Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A. MHD convective flow due to a curved surface with thermal radiation and chemical reaction. J. Mol. Liq. 2017, 225, 482–489. [Google Scholar] [CrossRef]
- Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Sikander, W. Flow of carbon nanotubes suspended nanofluid in stretchable non-parallel walls. Neural Comput. Appl. 2017, 1–13. [Google Scholar] [CrossRef]
- Rosseland, S. Astrophysik Und Atom-Theoretische Grundlagen; Springer: Berlin, Germany, 1931. [Google Scholar]
- Magyari, E.; Pantokratoras, A. Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Transf. 2011, 38, 554–556. [Google Scholar] [CrossRef]
- Ali, M.E. Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 1994, 429, 227–234. [Google Scholar] [CrossRef]
- Grubka, L.J.; Bobba, K.M. Heat transfer characteristics of a continuous, stretching surface with variable temperature. ASME J. Heat Transf. 1985, 107, 248–250. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 2009, 44, 369–375. [Google Scholar] [CrossRef]
Pure Water | SWCNTs | MWCNTs | |
---|---|---|---|
SWCNT | 0.0 | 997.1 | 4.1669 | 0.613 |
0.05 | 1077.25 | 4.0138 | 1.1673 | |
0.10 | 1157.39 | 3.8607 | 1.7831 | |
0.15 | 1237.54 | 3.7076 | 2.4712 | |
0.20 | 1317.68 | 3.5545 | 3.2451 | |
MWCNT | 0.0 | 997.1 | 4.1669 | 0.613 |
0.05 | 1027.25 | 4.0222 | 1.1164 | |
0.10 | 1057.39 | 3.8776 | 1.6755 | |
0.15 | 1087.54 | 3.7329 | 2.3002 | |
0.20 | 1117.68 | 3.5882 | 3.0027 |
Abbas et al. [44] | SWCNT | MWCNT | ||
---|---|---|---|---|
0.0 | 5 | 1.15763 | 1.15763 | 1.15763 |
10 | 1.07349 | 1.07349 | 1.07349 | |
20 | 1.03561 | 1.03561 | 1.03561 | |
50 | 1.01405 | 1.01405 | 1.01405 | |
100 | 1.00704 | 1.00704 | 1.00704 | |
200 | 1.00356 | 1.00356 | 1.00356 | |
1000 | 1.00079 | 1.00079 | 1.00079 | |
1.00000 | 1.00000 | 1.00000 | ||
0.1 | 5 | - | 1.43781 | 1.38677 |
10 | - | 1.32577 | 1.27251 | |
20 | - | 1.27579 | 1.22190 | |
0.2 | 5 | - | 1.80802 | 1.69810 |
10 | - | 1.65195 | 1.53544 | |
20 | - | 1.58323 | 1.46471 |
SWCNT | 0.0 | 1.00001 | 3.19358 | 1.00001 | 2.87661 | 1.00001 | 2.51646 |
0.1 | 1.22906 | 5.06371 | 1.22906 | 4.43995 | 1.22906 | 3.66480 | |
0.2 | 1.51945 | 6.42309 | 1.51945 | 5.47268 | 1.51945 | 4.01986 | |
MWCNT | 0.0 | 1.00001 | 3.19358 | 1.00001 | 2.87661 | 1.00001 | 2.51646 |
0.1 | 1.17477 | 4.95614 | 1.17477 | 4.36549 | 1.17477 | 3.64727 | |
0.2 | 1.39944 | 6.29734 | 1.39944 | 5.42743 | 1.39944 | 4.25578 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saba, F.; Ahmed, N.; Hussain, S.; Khan, U.; Mohyud-Din, S.T.; Darus, M. Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation. Appl. Sci. 2018, 8, 395. https://doi.org/10.3390/app8030395
Saba F, Ahmed N, Hussain S, Khan U, Mohyud-Din ST, Darus M. Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation. Applied Sciences. 2018; 8(3):395. https://doi.org/10.3390/app8030395
Chicago/Turabian StyleSaba, Fitnat, Naveed Ahmed, Saqib Hussain, Umar Khan, Syed Tauseef Mohyud-Din, and Maslina Darus. 2018. "Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation" Applied Sciences 8, no. 3: 395. https://doi.org/10.3390/app8030395
APA StyleSaba, F., Ahmed, N., Hussain, S., Khan, U., Mohyud-Din, S. T., & Darus, M. (2018). Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation. Applied Sciences, 8(3), 395. https://doi.org/10.3390/app8030395