Internet of Things for Sensing: A Case Study in the Healthcare System
Abstract
:1. Introduction
2. Related Work
3. S-Band Sensing and Data Processing
Phase Calibration
4. Data Classification
4.1. Support Vector Machine for Data Classification
4.2. K-Nearest Neighbor Algorithm
4.3. Random Forest Algorithm
5. Experimental Setup
6. Results and Discussion
6.1. Classification Results
6.1.1. Results Obtained Using SVM
6.1.2. Data Classification Using KNN and RF
6.1.3. Results Obtained Using SVM, KNN, and RF Classifiers
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Kumar, N.; Rodrigues, J.J.P.C.; Chilamkurti, N. Bayesian coalition game as-a-service for content distribution in internet of vehicles. IEEE Internet Things J. 2014, 1, 544–555. [Google Scholar] [CrossRef]
- Tentori, M.; Favela, J. Activity-aware computing for healthcare. IEEE Pervasive Comput. 2008, 7. [Google Scholar] [CrossRef]
- Kudo, M.; Sklansky, J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 2000, 33, 25–41. [Google Scholar] [CrossRef]
- Burgess, C.R.; Scammell, T.E. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J. Neurosci. 2012, 32, 12305–12311. [Google Scholar] [CrossRef] [PubMed]
- La Herrán-Arita, D.; Alberto, K.; Guerra-Crespo, M.; Drucker-Colin, R. Narcolepsy and Orexins: An example of progress in sleep research. Front. Neurol. 2011, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.M.; Srivastava, G.; Saeed, S.H. Diagnosis of narcolepsy sleep disorder for different stages of sleep using Short Time Frequency analysis of PSD approach applied on EEG signal. In Proceedings of the Computational Techniques in Information and Communication Technologies (ICCTICT), New Delhi, India, 11–13 March 2016; pp. 500–508. [Google Scholar]
- Han, C.; Wu, K.; Wang, Y.; Ni, L.-M. Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 2017, 16, 581–594. [Google Scholar]
- Pu, Q.; Gupta, S.; Gollakota, S.; Patel, S. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, Miami, FL, USA, 30 September–4 October 2013; pp. 27–38. [Google Scholar]
- Kohsaka, M.; Fukuda, N. Twenty-four-hour sleep-wake monitoring in narcolepsy: Comparison with MSLT. Sleep Med. 2013, 14 (Suppl. 1), e172. Available online: https://doi.org/10.1016/j.sleep.2013.11.403 (accessed on 5 March 2018). [CrossRef]
- Coronato, A.; de Pietro, G.; Paragliola, G. A situation-aware system for the detection of motion disorders of patients with Autism Spectrum Disorders. Expert Syst. Appl. 2014, 41, 7868–7877. [Google Scholar] [CrossRef]
- Islam, M.Z.; Nahiyan, K.M.T.; Kiber, M.A. A motion detection algorithm for video-polysomnography to diagnose sleep disorder. In Proceedings of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2015; pp. 272–275. [Google Scholar]
- Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Rodrigues, J.J.; Verikoukis, C. QoS-aware Energy Management in Body Sensor Nodes Powered by Human Energy Harvesting. IEEE Sens. 2016, 16, 542–549. [Google Scholar] [CrossRef]
- Tennina, S.; Santos, M.; Mesodiakaki, A.; Mekikis, P.V.; Kartsakli, E.; Antonopoulos, A.; Di Renzo, M.; Stavridis, A.; Graziosi, F.; Alonso, L.; et al. WSN4QoL: WSNs for Remote Patient Monitoring in e-Health Applications. In Proceedings of the IEEE ICC, Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Jara, A.J.; Zamora, M.A.; Skarmeta, A.F. An internet of things—Based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 2011, 15, 431–440. [Google Scholar] [CrossRef]
- Tian, J.; Morillo, C.; Azarian, M.H.; Pecht, M. Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis. IEEE Trans. Ind. Electron. 2016, 63, 1793–1803. [Google Scholar] [CrossRef]
- Dong, B.; Ren, A.; Shah, S.A.; Hu, F.; Zhao, N.; Yang, X.; Haider, D.; Zhang, Z.; Zhao, W.; Abbasi, Q.H. Monitoring of atopic dermatitis using leaky coaxial cable. Healthc. Technol. Lett. 2017, 4, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shah, S.A.; Ren, A.; Zhao, N.; Fan, D.; Hu, F.; Ur-Rehman, M.; von Deneen, K.M.; Tian, J. Wandering Pattern Sensing at S-Band. IEEE J. Biomed. Health Inform. 2017. [Google Scholar] [CrossRef]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Espiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [PubMed]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Nugent, C.D.; Wang, H. A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 2012, 24, 961–974. [Google Scholar] [CrossRef]
- Lee, Y.S.; Pathirana, P.N.; Steinfort, C.L.; Caelli, T. Monitoring and analysis of respiratory patterns using microwave doppler radar. IEEE J. Transl. Eng. Health Med. 2014, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Detection of Essential Tremor at the S-Band. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bryan, J.D.; Kwon, J.; Lee, N.; Kim, Y. Application of ultra-wideband radar for classification of human activities. IET Radar Sonar Navig. 2012, 6, 172–179. [Google Scholar] [CrossRef]
- Shany, T.; Redmond, S.J.; Narayanan, M.R.; Lovell, N.H. Sensorsbased wearable systems for monitoring of human movement and falls. IEEE Sens. J. 2012, 12, 658–670. [Google Scholar] [CrossRef]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhou, G.; Li, Y.; Peng, G. RadioSense: Exploiting wireless communication patterns for body sensor network activity recognition. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium, San Juan, Puerto Rico, 4–7 December 2012; pp. 95–104. [Google Scholar]
- Kaushik, A.R.; Lovell, N.H.; Celler, B.G. Evaluation of PIR detector characteristics for monitoring occupancy patterns of elderly people living alone at home. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3802–3805. [Google Scholar]
- Zhou, Z.; Chen, X.; Chung, Y.-C.; He, Z.; Han, T.X.; Keller, J.M. Videobased activity monitoring for indoor environments. In Proceedings of the IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 1449–1452. [Google Scholar]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, T.; Zhang, T.; Cao, L. A multiscale noise tuning stochastic resonance for fault diagnosis in rolling element bearings. Chin. J. Phys. 2018, 56, 145–157. [Google Scholar] [CrossRef]
- Ström, E.G. On 20 MHz channel spacing for V2X communication based on 802.11 OFDM. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 6891–6896. [Google Scholar]
- Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Predictable 802.11 packet delivery from wireless channel measurements. In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; pp. 159–170. [Google Scholar]
- Shah, S.A.; Zhang, Z.; Ren, A.; Zhao, N.; Yang, X.; Zhao, W.; Yang, J.; Zhao, J.; Sun, W.; Hao, Y. Buried Object Sensing Considering Curved Pipeline. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2771–2775. [Google Scholar] [CrossRef]
- Gao, W.; Oh, S.; Viswanath, P. Demystifying Fixed k-Nearest Neighbor Information Estimators. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017. [Google Scholar]
- Sreejith, B.; Verma, A.K.; Srividya, A. Fault diagnosis of rolling element bearing using time-domain features and neural networks. In Proceedings of the IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Kharagpur, India, 8–10 December 2008. [Google Scholar]
- Phan, H.; Maaß, M.; Mazur, R.; Mertins, A. Random Regression Forests for Acoustic Event Detection and Classification. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 20–31. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Dumais, S.T. Using SVMs for text categorization. IEEE Intell. Syst. 1998, 13, 21–23. [Google Scholar]
- Jerome, F.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Rai, V.; Mohanty, A. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 2007, 21, 2607–2615. [Google Scholar] [CrossRef]
- Qin, Y.; Xing, J.; Mao, Y. Weak transient fault feature extraction based on an optimized Morlet wavelet and kurtosis. Meas. Sci. Technol. 2016, 27, 085003. [Google Scholar] [CrossRef]
- Shah, S.A.; Zhao, N.; Ren, A.; Zhang, Z.; Yang, X.; Yang, J.; Zhao, W. Posture Recognition to Prevent Bedsores for Multiple Patients Using Leaking Coaxial Cable. IEEE Access 2016, 4, 8065–8072. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Kumar, P.S.; Pranavi, S. Performance analysis of machine learning algorithms on diabetes dataset using big data analytics. In Proceedings of the 2017 International Conference on INFOCOM Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), Dubai, UAE, 18–20 December 2017; pp. 508–513. [Google Scholar]
- Wikipedia.org. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on 12 February 2018).
- Breiman, L. Random forests. J. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Type | Kernel FunctionK (x, xi), i = 1, 2, 3, …, P |
---|---|
Linear | |
Polynomial | |
Radial-basis function (RBF) |
(a) Accuracy of SVM Used for Sleep Attack Detection—With Microwave Absorbing Material | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kernel | 5 Features | 10 Features | |||||||||
Function | S | a | b | c | d | e | a | b | c | d | e |
Linear | 40 | 98.75 | 78.25 | 90.50 | 98.25 | 65.00 | 97.00 | 75.25 | 94.75 | 98.50 | 84.00 |
80 | 98.25 | 77.25 | 91.75 | 98.00 | 65.50 | 98.75 | 78.25 | 95.25 | 98.75 | 87.00 | |
120 | 98.25 | 76.50 | 90.00 | 98.00 | 66.25 | 99.00 | 78.00 | 95.50 | 99.00 | 89.75 | |
Polynomial | 40 | 98.50 | 69.25 | 89.50 | 95.00 | 80.50 | 95.50 | 81.75 | 90.50 | 98.50 | 89.75 |
80 | 99.50 | 71.50 | 87.75 | 95.00 | 85.25 | 98.00 | 87.75 | 92.25 | 98.50 | 92.00 | |
120 | 99.00 | 74.25 | 88.50 | 99.00 | 87.75 | 98.50 | 84.75 | 95.25 | 98.50 | 92.75 | |
RBF | 40 | 98.25 | 74.75 | 89.50 | 98.00 | 84.00 | 98.25 | 78.75 | 92.50 | 99.50 | 88.50 |
80 | 98.25 | 74.50 | 89.00 | 98.25 | 86.25 | 98.25 | 83.25 | 95.00 | 99.25 | 91.00 | |
120 | 98.25 | 88.00 | 88.50 | 98.00 | 87.25 | 98.75 | 84.50 | 96.00 | 99.25 | 91.25 | |
(b) Accuracy of SVM Used for Sleep Attack Detection—Without Microwave Absorbing Material | |||||||||||
Kernel | 5 Features | 10 Features | |||||||||
Function | S | a | b | c | d | e | a | b | c | d | e |
Linear | 40 | 91.65 | 74.19 | 85.50 | 96.80 | 60.00 | 91.50 | 73.13 | 91.98 | 96.52 | 82.22 |
80 | 93.11 | 74.87 | 86.55 | 96.14 | 61.43 | 92.04 | 74.91 | 92.11 | 96.61 | 84.74 | |
120 | 95.55 | 74.71 | 87.52 | 96.00 | 62.31 | 91.95 | 75.11 | 97.50 | 97.43 | 88.75 | |
Polynomial | 40 | 92.75 | 66.14 | 88.72 | 96.61 | 77.52 | 92.50 | 79.81 | 88.00 | 96.19 | 81.12 |
80 | 94.28 | 66.50 | 89.85 | 91.21 | 79.52 | 94.42 | 79.90 | 89.13 | 95.93 | 89.54 | |
120 | 94.96 | 70.13 | 88.89 | 97.11 | 83.81 | 96.62 | 80.01 | 91.72 | 97.09 | 88.75 | |
RBF | 40 | 96.69 | 71.11 | 90.10 | 98.21 | 80.14 | 97.15 | 76.75 | 90.80 | 95.31 | 85.77 |
80 | 96.11 | 71.32 | 90.32 | 98.71 | 80.85 | 97.95 | 80.94 | 91.84 | 95.54 | 90.64 | |
120 | 96.25 | 74.43 | 90.51 | 98.28 | 81.25 | 97.75 | 81.74 | 92.56 | 96.33 | 88.91 |
(a) Confusion matrix obtained using SVM for 120 training samples | |||||
---|---|---|---|---|---|
Sitting | Walking | Push-ups | Squatting | Sleep attacks | |
Sitting | 118 | 3 | 1 | 1 | 2 |
Walking | 1 | 101 | 1 | 0 | 1 |
Push-ups | 0 | 4 | 116 | 0 | 3 |
Squatting | 1 | 5 | 2 | 119 | 4 |
Sleep attacks | 0 | 7 | 0 | 0 | 110 |
(b) Confusion matrix obtained using KNN for 120 training samples | |||||
Sitting | 111 | 1 | 1 | 3 | 1 |
Walking | 2 | 104 | 2 | 4 | 0 |
Push-ups | 4 | 6 | 110 | 6 | 1 |
Squatting | 2 | 5 | 2 | 102 | 2 |
Sleep attacks | 1 | 4 | 5 | 5 | 116 |
(c) Confusion matrix obtained using RF for 120 training samples | |||||
Sitting | 105 | 8 | 2 | 3 | 2 |
Walking | 5 | 96 | 3 | 5 | 1 |
Push-ups | 4 | 8 | 112 | 1 | 2 |
Squatting | 3 | 3 | 2 | 109 | 2 |
Sleep attacks | 3 | 5 | 1 | 2 | 113 |
(a) Classification results obtained using SVM (%) | ||||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F-Measure | Kappa | |
Sitting | 98.3 | 94.4 | 94.4 | 99.0 | 96.0 | 0.925 |
Walking | 84.1 | 97.1 | 97.0 | 96.0 | 90.0 | |
Push-ups | 96.6 | 94.3 | 94.3 | 99.1 | 95.4 | |
Squatting | 99.1 | 90.8 | 91.0 | 99.7 | 95.2 | |
Sleep attacks | 91.6 | 94.0 | 94.0 | 97.8 | 92.8 | |
(b) Classification results obtained using SVM (%) | ||||||
Sitting | 94.8 | 92.5 | 94.8 | 97.5 | 93.6 | 0.811 |
Walking | 92.8 | 86.6 | 92.8 | 96.6 | 89.6 | |
Push-ups | 86.6 | 91.6 | 86.6 | 97.7 | 89.0 | |
Squatting | 90.2 | 85.0 | 90.2 | 96.0 | 87.5 | |
Sleep attacks | 88.5 | 96.6 | 88.5 | 99.0 | 92.4 | |
(c) Classification results obtained using RF (%) | ||||||
Sitting | 87.5 | 87.5 | 87.5 | 96.6 | 84.4 | 0.865 |
Walking | 87.2 | 80.0 | 87.2 | 94.8 | 83.4 | |
Push-ups | 88.1 | 93.3 | 88.1 | 97.5 | 90.6 | |
Squatting | 91.5 | 90.8 | 91.5 | 97.4 | 91.2 | |
Sleep attacks | 91.1 | 94.1 | 91.1 | 98.3 | 92.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.A.; Ren, A.; Fan, D.; Zhang, Z.; Zhao, N.; Yang, X.; Luo, M.; Wang, W.; Hu, F.; Rehman, M.U.; et al. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 508. https://doi.org/10.3390/app8040508
Shah SA, Ren A, Fan D, Zhang Z, Zhao N, Yang X, Luo M, Wang W, Hu F, Rehman MU, et al. Internet of Things for Sensing: A Case Study in the Healthcare System. Applied Sciences. 2018; 8(4):508. https://doi.org/10.3390/app8040508
Chicago/Turabian StyleShah, Syed Aziz, Aifeng Ren, Dou Fan, Zhiya Zhang, Nan Zhao, Xiaodong Yang, Ming Luo, Weigang Wang, Fangming Hu, Masood Ur Rehman, and et al. 2018. "Internet of Things for Sensing: A Case Study in the Healthcare System" Applied Sciences 8, no. 4: 508. https://doi.org/10.3390/app8040508
APA StyleShah, S. A., Ren, A., Fan, D., Zhang, Z., Zhao, N., Yang, X., Luo, M., Wang, W., Hu, F., Rehman, M. U., Badarneh, O. S., & Abbasi, Q. H. (2018). Internet of Things for Sensing: A Case Study in the Healthcare System. Applied Sciences, 8(4), 508. https://doi.org/10.3390/app8040508