Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sample Collection for SBR System
2.2. Operating Conditions of the SBR System
2.3. Collection of Activated Sludge and Outlet Water Analysis
2.4. DNA Extraction
2.5. Sequencing of 16S Amplicons
2.6. Bioinformatics Analysis
2.7. Functional Predictions
3. Results
3.1. Organic Matter Removal of the SBR System
3.2. Total Nitrogen (TN) and Phosphorous (TP) Removal of the SBR System
3.3. Sludge Volume Index (SVI30)
3.4. Granular Sludge Structure
3.5. Sequencing Analysis
3.6. The α-Diversity
3.7. Overall Bacterial Community
3.8. Functional Predictions using PICRUSt
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, L.K.; Li, Y. Sequencing Batch Reactors: In Biological Treatment Processes; Humana Press: Totowa, NJ, USA, 2009; pp. 459–511. [Google Scholar]
- Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M.C.M. Effect of elevated salt concentrations on the aerobic granular sludge process: Linking microbial activity with microbial community structure. Appl. Environ. Microbiol. 2011, 77, 7942–7953. [Google Scholar] [CrossRef] [PubMed]
- Münch, E.V.; Lant, P.; Keller, J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res. 1996, 30, 277–284. [Google Scholar] [CrossRef]
- Morgenroth, E.; Sherden, T.; Van Loosdrecht, M.C.M.; Heijnen, J.J.; Wilderer, P.A. Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997, 31, 3191–3194. [Google Scholar] [CrossRef]
- Weber, S.D.; Ludwig, W.; Schleifer, K.-H.; Fried, J. Microbial composition and structure of aerobic granular sewage biofilms. Appl. Environ. Microbiol. 2007, 73, 6233–6240. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.F.; Bessa, V.S.; Castro, P.M.L. Characterization of the bacterial communities of aerobic granules in a 2-fluorophenol degrading process. Biotechnol. Rep. 2015, 5, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Cydzik-Kwiatkowska, A.; Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 2016, 32, 66. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Amann, R.; Lemmer, H.; Schleifer, K.H. Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 1993, 59, 1520–1525. [Google Scholar] [PubMed]
- Liu, X.; Zhang, Y.; Yang, M.; Wang, Z.; Lv, W. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method. J. Environ. Sci. 2007, 19, 60–66. [Google Scholar] [CrossRef]
- Pholchan, M.K.; de Baptista, J.C.; Davenport, R.J.; Curtis, T.P. Systematic study of the effect of operating variables on reactor performance and microbial diversity in laboratory-scale activated sludge reactors. Water Res. 2010, 44, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Hesham, A.E.-L.; Qi, R.; Yang, M. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. J. Environ. Sci. 2011, 23, 2049–2054. [Google Scholar] [CrossRef]
- Gich, F.B.; Amer, E.; Figueras, J.B.; Abella, C.A.; Balaguer, M.D.; Poch, M. Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int. Microbiol. 2000, 3, 103–106. [Google Scholar] [PubMed]
- Kim, D.J.; Kim, T.K.; Choi, E.J.; Park, W.C.; Kim, T.H.; Ahn, D.H.; Yuan, Z.; Blackall, L.; Keller, J. Fluorescence in situ hybridization analysis of nitrifiers in piggery wastewater treatment reactors. Water Sci. Technol. 2004, 49, 333–340. [Google Scholar] [PubMed]
- Hu, M.; Wang, X.; Wen, X.; Xia, Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour. Technol. 2012, 117, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shao, M.-F.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Taylor, M.W.; Turner, S.J. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Appl. Microbiol. Biotechnol. 2014, 98, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Qiao, W.; Xing, C.; An, Y.; Shen, X.; Ren, W.; Jiang, L.; Wang, L. Microbial community structure of anoxic–oxic-settling-anaerobic sludge reduction process revealed by 454-pyrosequencing. Chem. Eng. J. 2015, 266, 249–257. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Lotti, T.; Garcia-Ruiz, M.-J.; Osorio, F.; Gonzalez-Lopez, J.; van Loosdrecht, M.C.M. Comparison of bacterial communities of conventional and A-stage activated sludge systems. Sci. Rep. 2016, 6, 18786. [Google Scholar] [CrossRef] [PubMed]
- American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Jeon, Y.-S.; Park, S.-C.; Lim, J.; Chun, J.; Kim, B.-S. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J. Microbiol. 2015, 53, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Eom, Y.-B. Analysis of microbial composition associated with freshwater and seawater. Biomed. Sci. Lett. 2016, 22, 150–159. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockhorn, T.; Dichtl, N.; Kayser, R. Comparative investigations on COD-removal in sequencing batch reactors and continuous flow plants. Water Sci. Technol. 2001, 43, 45–52. [Google Scholar] [PubMed]
- De Sousa, J.T.; Foresti, E. Domestic sewage treatment in an upflow anaerobic sludge blanket—Sequencing batch reactor system. Water Sci. Technol. 1996, 33, 73–84. [Google Scholar]
- Lo, K.V.; Cheuk, W.; Wong, R. Treatment of malting wastewater using suspended-growth and attached-growth sequencing batch reactors. Environ. Technol. 1999, 20, 227–232. [Google Scholar] [CrossRef]
- Ling, L.; Lo, K.V. Brewery wastewater treatment using suspended and attached growth sequencing batch reactors. J. Environ. Sci. Health Part A 1999, 34, 341–355. [Google Scholar] [CrossRef]
- Jungles, M.K.; Campos, J.L.; Costa, R.H.R. Sequencing batch reactor operation for treating wastewater with aerobic granular sludge. Braz. J. Chem. Eng. 2014, 31, 27–33. [Google Scholar] [CrossRef]
- Qiu, Y.; Shi, H.; He, M. Nitrogen and phosphorous removal in municipal wastewater treatment plants in China: A Review. Int. J. Chem. Eng. 2010, 2010, 914159. [Google Scholar] [CrossRef]
- Delgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep. 2016, 11, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Yamamoto-Ikemoto, R. Nitrogen and phosphorus removal from wastewater treatment plant effluent via bacterial sulfate reduction in an anoxic bioreactor packed with wood and iron. Int. J. Environ. Res. Public Health 2014, 11, 9835–9853. [Google Scholar] [CrossRef] [PubMed]
- Kishida, N.; Tsuneda, S.; Kim, J.H.; Sudo, R. Simultaneous nitrogen and phosphorus removal from high-strength industrial wastewater using aerobic granular sludge. J. Environ. Eng. 2009, 135, 153–158. [Google Scholar] [CrossRef]
- Wei, D.; Shi, L.; Yan, T.; Zhang, G.; Wang, Y.; Du, B. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. Bioresour. Technol. 2014, 171, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Sanapareddy, N.; Hamp, T.J.; Gonzalez, L.C.; Hilger, H.A.; Fodor, A.A.; Clinton, S.M. Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl. Environ. Microbiol. 2009, 75, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. 2013, 97, 2681–2690. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Jin, Y.; Jiayang, W.; Lipeng, C. MiSeq sequencing analysis of bacterial community structures in wastewater treatment plants. Pol. J. Environ. Stud. 2015, 24, 1809–1815. [Google Scholar] [CrossRef]
- He, Q.; Zhou, J.; Wang, H.; Zhang, J.; Wei, L. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. Bioresour. Technol. 2016, 214, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.-X.; Lu, X.; Liu, B.; Li, Y.; Long, C.; Li, A. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS ONE 2014, 9, 113603. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ni, B.J.; Han, X.; Chen, X.; Bond, P.; Peng, Y.; Yuan, Z. Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzym. Microb. Technol. 2017, 102, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Konkit, M.; Kim, Y.; Kim, M.-K.; Kim, W. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice. J. Dairy Sci. 2016, 99, 6889–6901. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-L.; Nam, S.-W.; Yoon, J.H.; Lee, J.S.; Sukhoom, A.; Kim, W. Lactococcus chungangensis sp. nov.; a lactic acid bacterium isolated from activated sludge foam. Int. J. Syst. Evol. Microbiol. 2008, 58, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Petrov, K.; Urshev, Z.; Petrova, P. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol. 2008, 25, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Turpin, W.; Humblot, C.; Guyot, J.P. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol. 2011, 77, 8722–8734. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Follador, R. Metabolism of oligosaccharides and starch in Lactobacilli: A review. Front. Microbiol. 2012, 3, 340. [Google Scholar] [CrossRef] [PubMed]
- Hii, S.L.; Tan, J.S.; Ling, T.C.; Ariff, A.B. Pullulanase: Role in starch hydrolysis and potential industrial applications. Enzym. Res. 2012, 2012, 921362. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, Y. Pullulanase, Methods of Producing Pullulanase and Methods of Saccharification of Starch Using Pullulanase. U.S. Patent 5,316,924 A, 31 May 1994. [Google Scholar]
Metrics | Number |
---|---|
Total reads | 42,058 |
Quality trimmed reads | 39,208 |
Merged reads | 38,545 |
Primer trimmed reads | 38,355 |
Length trimmed reads | 38,344 |
Sampled reads | 20,000 |
Chimera reads | 4403 |
Non-target reads | 6 |
Valid reads | 15,590 |
Min length | 315 |
Max length | 461 |
Average length | 421 |
Target Reads | Value |
---|---|
Valid reads | 15,590 |
OTUs | 633 |
Ace | 751 |
Chao1 | 701 |
Shannon | 4.0 |
Goods Lib. Coverage | 99.0 |
No. | Species | Frequency | Quantity |
---|---|---|---|
1 | Lactococcus chungangensis | 20.69120 | 3227 |
2 | Janthinobacterium lividum | 6.50167 | 1014 |
3 | Megasphaera cerevisiae | 3.63555 | 567 |
4 | Sulfurospirillum arsenophilum | 3.59066 | 560 |
5 | Pseudomonas flavescens | 2.34034 | 365 |
6 | Pseudomonas veronii | 2.03898 | 318 |
7 | Macellibacteroides fermentans | 1.76327 | 275 |
8 | Soonwooa buanensis | 1.10926 | 173 |
Enzymes | Percent Read | Pathway |
---|---|---|
Starch phosphorylase | 0.043 | EC:2.4.1.1 |
α-amylase | 0.043 | EC:3.2.1.1 |
Glucoamylase | 0.001 | EC:3.2.1.3 |
Pullulanase | 0.017 | EC:3.2.1.41 |
α-galactosidase | 0.036 | EC:3.2.1.22 |
β-galactosidase | 0.072 | EC:3.2.1.23 |
α-glucosidase | 0.060 | EC:3.2.1.20 |
β-glucosidase | 0.113 | EC:3.2.1.21 |
1,4-α-glucan branching enzyme | 0.043 | EC:2.4.1.18 |
Oligo-1,6-glucosidase | 0.002 | EC:3.2.1.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinh, T.T.; Hieu, P.D.; Cuong, B.V.; Linh, N.N.; Lan, N.N.; Nguyen, N.S.; Hung, N.Q.; Hien, L.T.T. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector. Appl. Sci. 2018, 8, 509. https://doi.org/10.3390/app8040509
Chinh TT, Hieu PD, Cuong BV, Linh NN, Lan NN, Nguyen NS, Hung NQ, Hien LTT. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector. Applied Sciences. 2018; 8(4):509. https://doi.org/10.3390/app8040509
Chicago/Turabian StyleChinh, Tang Thi, Phung Duc Hieu, Bui Van Cuong, Nguyen Nhat Linh, Nguyen Ngoc Lan, Nguyen Sy Nguyen, Nguyen Quang Hung, and Le Thi Thu Hien. 2018. "Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector" Applied Sciences 8, no. 4: 509. https://doi.org/10.3390/app8040509
APA StyleChinh, T. T., Hieu, P. D., Cuong, B. V., Linh, N. N., Lan, N. N., Nguyen, N. S., Hung, N. Q., & Hien, L. T. T. (2018). Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector. Applied Sciences, 8(4), 509. https://doi.org/10.3390/app8040509