Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material
Abstract
:1. Introduction
2. Experimental
3. Results
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, J.; Xu, D.; Wang, C.; Qian, W.; Guo, J.; Yan, F. Ferric citrate-derived n-doped hierarchical porous carbons for oxygen reduction reaction and electrochemical supercapacitors. Carbon 2017, 115, 1–10. [Google Scholar] [CrossRef]
- Jing, T.; Jian, L.; Torad, N.L.; Kimura, T.; Yamauchi, Y. Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 2014, 9, 305–323. [Google Scholar]
- Chen, Y.; Wen, C.; Wang, C.; Ho, C.; Lin, S.; Chen, Y. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor. Appl. Sci. 2016, 6, 413. [Google Scholar] [CrossRef]
- Yi, W. Activated Carbon Microtubes Prepared from Plant Biomass (Poplar Catkins) and Their Application for Supercapacitors. Chem. Lett. 2014, 43, 216–218. [Google Scholar]
- Yang, J.; Weng, W.; Zhang, Y.; Du, X.; Liang, Y.; Yang, L. Highly flexible and shape-persistent graphenemicrotube and its energy storage performance. Carbon 2018, 126, 419–423. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, L.; He, X.; Yu, H.; Han, J.; Wu, M. 3D interconnected porous carbons from MOF-5 for supercapacitors. Mater. Lett. 2016, 172, 81–84. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, L.; Long, C.; Fan, Z. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527–536. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, Y.; Li, H.; Wang, J. A facile method to synthesise reduced graphene oxide/carbon nanotube hybrid fibers as binder-free electrodes for supercapacitors. Synth. Met. 2017, 232, 66–71. [Google Scholar] [CrossRef]
- Lu, H.; Li, Q.; Guo, J.; Song, A.; Gong, C.; Zhang, J. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors. Appl. Surf. Sci. 2018, 427, 992–999. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Cao, H.; Zhao, H.; Fan, Z. KOH self-templating synthesis of three dimensional hierarchical porous carbon materials for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 14844–14851. [Google Scholar] [CrossRef]
- Chen, C.; Yu, D.; Zhao, G.; Du, B.; Tang, W.; Sun, L.; Flemming, B.; Yu, M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 2016, 27, 377–389. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Yu, Z.; Zhang, H.; Wang, A.; Yang, Y. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J. Mater. Chem. 2010, 20, 976–980. [Google Scholar] [CrossRef]
- Xie, Q.; Bao, R.; Xie, C.; Zheng, A.; Wu, S.; Zhang, Y. Core-shell n-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J. Power Sources 2016, 317, 133–142. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.; Li, Q.; Yang, J.; Dai, Q. Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J. Phys. Chem. Solids 2008, 69, 2420–2425. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W. Facile preparation of water soluble phenol formaldehyde resin-derived activated carbon by Na2CO3 activation for high performance supercapacitors. Mater. Lett. 2017, 206, 67–70. [Google Scholar] [CrossRef]
- Lu, W.; Huang, S.; Miao, L.; Liu, M.; Zhu, D.; Li, L.; Duan, H.; Xu, Z.; Gan, L. Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 2017, 28, 1324–1329. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, W.; Zhang, J.; Cao, G.; Han, M.; Yang, Y. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy density. Green Chem. 2017, 19, 3916–3926. [Google Scholar] [CrossRef]
- Jiang, H.; Lee, P.S.; Li, C. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, J.; Zhao, X.; Hao, Z.; Zhuang, Q.; Zhu, J.; Wang, X.; Wei, X. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochim. Acta 2017, 252, 397–407. [Google Scholar] [CrossRef]
- Zou, B.; Zhang, Y.; Wang, J.; Liang, X.; Ma, X.; Chen, C. Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochim. Acta 2015, 167, 25–31. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Li, Z.; Qu, K.; Wang, L.; Zeng, W. Ultra-uniform Cuo/Cu in nitrogen-doped carbon nanofibers as a stable anode for li-ion batteries. J. Mater. Chem. A 2016, 4, 10585–10592. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Zhang, M.; Cao, G. Energy storage: A phase-separation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 2017, 13, 1604045. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Gao, S.; Zang, P.; Yang, X.; Bai, Y.; Xu, H.; Liu, Z.; Lei, Z. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 2015, 93, 315–324. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Feng, C.; Zhao, R.; Sun, Y.; Guan, T. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. J. Power Sources 2017, 342, 363–370. [Google Scholar] [CrossRef]
- Tian, Y.; Li, D.; Liu, J.; Wang, H.; Zhang, J.; Zheng, Y. Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim. Acta 2017, 257, 155–164. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Zhang, H.; Liu, Q.; Li, R.; Li, B. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 2018, 257, 64–71. [Google Scholar] [CrossRef]
- Yang, X.; Du, G.; Zhang, L.; Liu, Y. Preparation of hierarchical porous carbon material derived from starch for high-performance electrochemical capacitor. Mater. Lett. 2016, 183, 52–55. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Z.; Zhang, B.; Zhao, S.; Qin, Y. Graphene coated with controllable n-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors. J. Power Sources 2016, 315, 254–260. [Google Scholar] [CrossRef]
- Lv, Y.; Gan, L.; Liu, M.; Xiong, W.; Xu, Z.; Zhu, D. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 2012, 209, 152–157. [Google Scholar] [CrossRef]
- Li, J.; Ren, Z.; Ren, Y.; Zhao, L.; Wang, S.; Yu, J. Activated carbon with micrometer-scale channels prepared from luffa sponge fibers and their application for supercapacitors. RSC Adv. 2014, 4, 35789–35796. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, H.; Huang, Y.; Wang, W.; Wei, S. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 2011, 49, 838–843. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated carbons from koh and H3PO4 -activation of olive residues and its application as supercapacitor electrodes. Electrochim. Acta 2017, 229, 219–228. [Google Scholar] [CrossRef]
- Rufford, T.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G.Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 2008, 10, 1594–1597. [Google Scholar] [CrossRef]
- Wu, M.; Ai, P.; Tan, M.; Jiang, B.; Li, Y.; Zheng, J. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chem. Eng. J. 2014, 245, 166–172. [Google Scholar] [CrossRef]
- Pang, L.; Zou, B.; Han, X.; Cao, L.; Wang, W.; Guo, Y. One-step synthesis of high-performance porous carbon from corn starch for supercapacitor. Mater. Lett. 2016, 184, 88–91. [Google Scholar] [CrossRef]
Precursor | SBET (m2g−1) | Capacitance (Fg−1) | Current Density (Ag−1) | Electrolyte | References |
---|---|---|---|---|---|
banana peel | 1650 | 206 | 1 | 6 M KOH | [29] |
luffa sponge | 1510 | 167 | 1 | 1 M Na2SO4 | [30] |
animal bone | 2157 | 185 | 0.05 | 7 M KOH | [31] |
lignite | 3162 | 295 | 0.04 | 6 M KOH | [19] |
olive residues | 1626 | 193 | 0.25 | 1 M H2SO4 | [32] |
waste coffee beans | 1019 | 368 | 0.05 | 1 M H2SO4 | [33] |
starch | 1157 | 144 | 0.05 | 6 M KOH | [34] |
starch | 1167 | 162 | 0.625 | 6 M KOH | [35] |
starch | 1693 | 179 | 0.5 | 5 M H2SO4 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Cai, L.; Xu, X.; Ying, J. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material. Appl. Sci. 2018, 8, 565. https://doi.org/10.3390/app8040565
Gao Y, Cai L, Xu X, Ying J. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material. Applied Sciences. 2018; 8(4):565. https://doi.org/10.3390/app8040565
Chicago/Turabian StyleGao, Yunfang, Liangpo Cai, Xin Xu, and Jie Ying. 2018. "Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material" Applied Sciences 8, no. 4: 565. https://doi.org/10.3390/app8040565
APA StyleGao, Y., Cai, L., Xu, X., & Ying, J. (2018). Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material. Applied Sciences, 8(4), 565. https://doi.org/10.3390/app8040565