Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System
Abstract
:Featured Application
Abstract
1. Introduction
- (1)
- Obtain Raman spectral images of curry powder–metanil yellow, curry powder–Sudan I, and curry powder–metanil yellow-–Sudan I samples prepared at different concentrations using the 1064 nm Raman system;
- (2)
- Identify the vibrational modes which are effective markers for specific chemical structural features unique to the metanil yellow and Sudan-I and discrete from the curry powder matrix vibrational modes;
- (3)
- Detect Sudan-I and metanil yellow contamination in curry powder at different concentrations;
- (4)
- Use self-modeling mixture analysis to resolve the multi-component spectra of curry powder–metanil yellow–Sudan I mixture sample into pure component spectra and scores for simultaneous detection of Sudan-I and metanil yellow.
2. Materials and Methods
2.1. Point-Scan Raman System
2.2. Sample Preparation
2.3. Acquisition of Spectral Image
2.4. Spectral Image Analysis
3. Results and Discussion
3.1. Spectral Characteristics of Samples
3.2. Detection of Sudan-I in Curry Powder
3.3. Detection of Metanil Yellow in Curry Powder
3.4. Simultaneous Detection of Sudan-I and Metanil Yellow in Curry Powder
4. Conclusions
Disclaimer
Author Contributions
Conflicts of Interest
References
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Chan, D. Evaluation of turmeric powder adulterated with metanil yellow using FT-Raman and FT-IR spectroscopy. Foods 2016, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Calbiani, F.; Careri, M.; Elviri, L.; Mangia, A.; Pistara, L.; Zagnoni, I. Development of in-house validation of a liquid chromatography-electrospray-tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III, and Sudan IV in hot chili products. J. Chromatogr. A 2004, 1042, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Anibal, C.; Odena, M.; Ruisanchez, I.; Callao, M.P. Determining the adulteration of spices with Sudan I-II-III-IV dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta 2009, 79, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, L.-H.; Eskilsson, C.S.; Bjorklund, E. Determination of banned azo dyes in consumer goods. Trends Anal. Chem. 2005, 24, 49–56. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives, 8th ed.; WHO Technical Series No. 309; World Health Organisation: Geneva, Switzerland, 1965; p. 23.
- Dixit, S.; Purshottam, S.K.; Khanna, S.K.; Das, M. Surveillance of the quality of turmeric powders from city markets of India on the basis of curcumin content and the presence of extraneous colors. Food Addit. Contam. 2009, 26, 1227–1231. [Google Scholar] [CrossRef]
- Nagaraja, T.N.; Desiraju, T. Effects of chronic consumption of Metanil yellow by developing and adult rats on brain regional levels of noradrenaline, dopamine and serotonin, on acetylcholine esterase activity and on operant conditioning. Food Chem. Toxicol. 1993, 31, 41–44. [Google Scholar] [CrossRef]
- Fernandes, C.; Rao, K.V. Dose related promoter effect of Metanil yellow on the development of hepatic pre-neoplastic lesions induced by N-nitrosodiethylamine in rats. Indian J. Med. Res. 1994, 100, 140–149. [Google Scholar] [PubMed]
- Gupta, S.; Sundarrajan, M.; Rao, K.V.K. Tumor promotion by Metanil yellow and Malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog. Carcinog. Mutagen. 2003, 1, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Raza, H.; Khanna, S.K.; Singh, G.B. Metanil yellow and gastric mucin. Indian J. Exp. Biol. 1978, 16, 383–384. [Google Scholar] [PubMed]
- Prasad, O.M.; Rastogi, P.M. Haematological changes induced by feeding a common food color, Metanil yellow, in Albino mice. Toxicol. Lett. 1983, 16, 103–107. [Google Scholar] [CrossRef]
- Ming, L.; Xi, X.; Chen, T.; Liu, J. Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors 2008, 8, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Stiborova, M.; Martinek, M.; Rydlova, H.; Hodek, P.; Frei, E. Sudan I is a potential carcinogen to humans: Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002, 62, 5678–5684. [Google Scholar] [PubMed]
- IARC (International Agency for Research on Cancer). Monographs on the Evaluation of the Carcinogenic Risk of Chemical to Man: Some Aromatic Azocompounds; International Agency for Research on Cancer: Lyon, France, 1975; Volume 8. [Google Scholar]
- Gao, F.; Hu, Y.; Chen, D.; Li-Chan, E.C.Y.; Grant, E.; Lu, X. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta 2015, 143, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Haughey, S.A.; Galvin-King, P.; Ho, Y.C.; Bell, S.E.J.; Elliott, C.T. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control 2015, 48, 75–83. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M. Fast Determination of Sudan I by HPLC/APCI-MS in hot chili, spices, and oven-baked foods. J. Agric. Food Chem. 2004, 52, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, X.; Prinyawiwatkul, W.; Xu, Z. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products. Food Chem. 2014, 157, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, B.; Syamkumar, S.; Remya, R.; Zachariah, T.J. PCR based detection of adulteration in the market sample of turmeric powder. Food Biotechnol. 2004, 18, 299–306. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Zhang, W.; Zhang, J.; Guo, P.; Sun, C. Simultaneous determination of nine banned azo dyes in foodstuffs and beverages by high-performance capillary electrophoresis. Food Anal. Methods 2015, 8, 1903–1910. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, J.; Zhang, J.; Ding, X.; Wu, Y.; Shao, B. Determination of 23 dyes in chili powder and paste by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Food Anal. Methods 2012, 5, 1018–1026. [Google Scholar] [CrossRef]
- Dixit, S.; Khanna, S.; Das, M. A simple 2-directional high-performance thin-layer chromatographic method for simultaneous determination of curcumin, metanil yellow, and Sudan dyes in turmeric, chili, and curry powders. J. Aoac. Int. 2008, 91, 1387–1396. [Google Scholar] [PubMed]
- Anibal, C.; Marsal, L.F.; Callao, M.P.; Ruisanchez, I. Surface enhanced Raman spectroscopy (SERS) and multivariate analysis is a screening tool for detecting Sudan I dye in culinary spices. Spectrochim. Acta A 2012, 87, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.; Shadi, I.T.; Xu, Y.; Goodacre, R. Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. J. Phys. Chem. C 2010, 114, 7285–7290. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Cho, B.K.; Peng, Y.K.; Kim, M. High throughput Raman chemical imaging for rapid evaluation of food safety and quality. Trans. ASABE 2014, 57, 1783–1792. [Google Scholar]
- Qin, J.; Chao, K.; Kim, M.; Cho, B.K. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients. Food Bioproc. Technol. 2016, 9, 113–123. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.; Chao, K.; Dhakal, S.; Lee, H.; Cho, B.K.; Mo, C. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Food Addit. Contam. Part A 2017, 34, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.; Dhakal, S.; Qin, J.; Kim, M.; Peng, Y. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation. Appl. Sci. 2018, 7, 431. [Google Scholar] [CrossRef]
- Winding, W.; Guilment, J. Interactive self- modeling mixture analysis. Anal. Chem. 1991, 63, 1425–1432. [Google Scholar] [CrossRef]
- Winding, W.; Gallagher, N.B.; Shaver, J.M.; Wise, B.M. A new approach for interactive self-modeling mixture analysis. Chemom. Intell. Lab. Syst. 2005, 77, 85–96. [Google Scholar] [CrossRef]
- Chao, K.; Dhakal, S.; Qin, J.; Peng, Y.; Schmidt, W.; Kim, S.; Chan, D. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders. Sensors 2017, 17, 618. [Google Scholar] [CrossRef] [PubMed]
- Batonneau, Y.; Laureyns, J.; Merlin, J.-C.; Bremard, C. Self-modeling mixture analysis of Raman microspectrometric investigations of dust emitted by lead and zinc smelters. Anal. Chim. Acta 2001, 446, 23–37. [Google Scholar] [CrossRef]
- Chang, C.I. An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef]
- Dhakal, S.; Chao, K.; Qin, J.; Kim, M.; Peng, Y.; Chan, D. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging. Appl. Sci. 2017, 7, 1. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Payton, J.L.; Chung, C.H.; Liu, R.; Cheunkar, S.; Pathem, B.K.; Yang, Y.; Jensen, L.; Weiss, P.S. Surface-enhanced Raman spectroscopy to probe reversible photoswitchable azobenzene in controlled nanoscale environments. Nano Lett. 2011, 11, 3447–3452. [Google Scholar] [CrossRef] [PubMed]
- Sett, P.; De, A.K.; Chattopadhyay, S.; Mallick, P.K. Raman excitation profile of diphenylamine. Chem. Phys. 2002, 276, 211–224. [Google Scholar] [CrossRef]
- Smulevich, G.; Angeloni, L.; Giovannarde, S.; Marzocchi, M.P. Resonance Raman and polarized light infrared spectra of 1, 4-dihydrozyanthraquinone. Vibrational studies of the ground and excited electronic states. Chem. Phys. 1983, 65, 313–322. [Google Scholar] [CrossRef]
- Darvin, M.E.; Gersonde, I.; Ey, S.; Brand, N.N.; Albrecht, H.; Gonchukov, S.A.; Sterry, W.; Lademann, J. Noninvasive detection of beta-carotene and lycopene in human skin using Raman spectroscopy. Laser Phys. 2004, 14, 231–233. [Google Scholar]
- Kim, J.; Kim, Y.; Chung, H. Direct on-line Raman measurement of flying solid samples: Determination of polyethylene pellet density. Talanta 2011, 83, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Kunov-Kruse, A.K.; Kristensen, S.B.; Liu, C.; Berg, R.W. Experimental and ab initio DFT calculated Raman spectrum of Sudan I, a red dye. J. Raman Spectrosc. 2011, 42, 1470–1478. [Google Scholar] [CrossRef]
Sudan-I | Metanil Yellow | Curry Powder | Spectral Assignments |
---|---|---|---|
1630 cm−1 | ν (C=C) stretching unconjugated | ||
1601 cm−1 | ν (N-N) stretching (III) | ||
1599 cm−1 | ν (C=C)stretching conjugated | ||
1593 cm−1 (s) | ν (N=N) stretching | ||
1522 cm−1 | δ (Ar-O + Ar-O-R) bending | ||
1494 cm−1 | ν (C-C) stretching on C=C-N and C-C-N | ||
1441 cm−1 | δ (H-C) out of plane bending | ||
1437 cm−1 (s) | ν (N=N) | ||
1387 cm−1 | Aromatic ring stretching | ||
1340 cm−1 | Aromatic ring stretching asym | ||
1254 cm−1 | ν (C-O) stretching | ||
1223 cm−1 | δ (O-H) bending asym | ||
1188 cm−1 | δ (C-H) | ||
1169 cm−1 | ν (C-Nazo) δ (CH) | ||
1147 cm−1 (s) | ν (C-Nazo) δ(CH) | ||
1001 cm−1 | Ring breathing | ||
995 cm−1 | Ring breathing (II) | ||
984 cm−1 | δ (C-N=N) out of plane bending |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Huang, Q. Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Appl. Sci. 2018, 8, 564. https://doi.org/10.3390/app8040564
Dhakal S, Chao K, Schmidt W, Qin J, Kim M, Huang Q. Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Applied Sciences. 2018; 8(4):564. https://doi.org/10.3390/app8040564
Chicago/Turabian StyleDhakal, Sagar, Kuanglin Chao, Walter Schmidt, Jianwei Qin, Moon Kim, and Qing Huang. 2018. "Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System" Applied Sciences 8, no. 4: 564. https://doi.org/10.3390/app8040564
APA StyleDhakal, S., Chao, K., Schmidt, W., Qin, J., Kim, M., & Huang, Q. (2018). Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Applied Sciences, 8(4), 564. https://doi.org/10.3390/app8040564