CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column and a Membrane Contactor
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Experimental Set up and Operation
2.3. Analytical Methods
2.4. Mass Transfer Equations
3. Results and Discussion
3.1. Variation of Species
3.2. Mass Transfer Coefficient
3.2.1. Influence of the Flow Rates of the Fluids on the Mass Transfer Coefficient
3.2.2. Influence of the Gas and Liquid Composition on the Mass Transfer Coefficient
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Pressure Drop Measurement
References
- Houghton, J.T.; Ding, Y.D.J.G.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis; The Press Syndicate of the University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- NASA Jet Propulsion Laboratory. Available online: http://climate.nasa.gov (accessed on 11 February 2018).
- Kuramochi, T.; Ramírez, A.; Turkenburg, W.; Faaij, A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 2012, 38, 87–112. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [PubMed]
- Favre, E. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chem. Eng. J. 2011, 171, 782–793. [Google Scholar] [CrossRef]
- Gabelman, A.; Hwang, S.T. Hollow fiber membrane contactors. J. Memb. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Luis, P.; Van der Bruggen, B. The role of membranes in post-combustion CO2 capture. Greenh. Gas Sci. Technol. 2013, 3, 318–337. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Luis, P.; Ortiz, I.; Aldaco, R.; Irabien, A. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC 50) of ionic liquids. Ecotoxicol. Environ. Saf. 2007, 67, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.J. Ca looping technology: current status, developments and future directions. Greenh. Gas Sci. Technol. 2011, 1, 36–47. [Google Scholar] [CrossRef]
- Romeo, L.M.; Catalina, D.; Lisbona, P.; Lara, Y.; Martínez, A. Reduction of greenhouse gas emissions by integration of cement plants, power plants, and CO2 capture systems. Greenh. Gas Sci. Technol. 2011, 1, 72–82. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.; Sarkar, P.; Gupta, R. Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 2011, 51, 1438–1463. [Google Scholar] [CrossRef]
- Liu, J.; Thallapally, P.K.; McGrail, B.P.; Brown, D.R.; Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322. [Google Scholar] [CrossRef] [PubMed]
- Luis, P.; Van Gerven, T.; Van der Bruggen, B. Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. 2012, 38, 419–448. [Google Scholar] [CrossRef]
- Close, J.J.; Farmer, K.; Moganty, S.S.; Baltus, R.E. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance. J. Memb. Sci. 2012, 390, 201–210. [Google Scholar] [CrossRef]
- Roberson, L.M. The upper bound revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Li, B.; Duan, Y.; Luebke, D.; Morreale, B. Advances in CO2 capture technology: A patent review. Appl. Energy 2013, 102, 1439–1447. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Memb. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Feng, C.; Wang, R.; Zhang, H.; Shi, L. Diverse morphologies of PVDF hollow fiber membranes and their performance analysis as gas/liquid contactors. J. Appl. Polym. Sci. 2011, 119, 1259–1267. [Google Scholar] [CrossRef]
- Luis, P.; Van Aubel, D.; Van der Bruggen, B. Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration. Int. J. Greenh. Gas Control 2013, 12, 450–459. [Google Scholar] [CrossRef]
- Ye, W.; Luis Alconero, P.; Van der Bruggen, B. Carbon Dioxide Recovery by Membrane Assisted Crystallization. In Proceedings of the International Conference on Chemical Science and Engineering (ICCSE 2013), Zurich, Switzerland, 30–31 July 2013. [Google Scholar]
- Ye, W.; Wu, J.; Ye, F.; Zeng, H.; Tran, A.T.; Lin, J.; Luis, P.; Van der Bruggen, B. Potential of osmotic membrane crystallization using dense membranes for Na2CO3 production in a CO2 capture scenario. Cryst. Growth Des. 2015, 15, 695–705. [Google Scholar] [CrossRef]
- Ruiz Salmón, I.; Janssens, R.; Luis, P. Mass and heat transfer study in osmotic membrane distillation-crystallization for CO2 valorization as sodium carbonate. Sep. Purif. Technol. 2017, 176, 173–183. [Google Scholar] [CrossRef]
- US Geological Survey & Orienteering S (Ed.) Mineral Commodity Summaries, 2017; Government Printing Office: Washington, DC, USA, 2017.
- Astarita, G. Absorption of carbon dioxide into alkaline solutions in packed towers. Ind. Eng. Chem. Fund. 1963, 2, 294–297. [Google Scholar] [CrossRef]
- Keramati, N.; Moheb, A.; Ehsani, M.R. Effect of operating parameters on NaOH recovery from waste stream of Merox tower using membrane systems: Electrodialysis and electrodeionization processes. Desalination 2010, 259, 97–102. [Google Scholar] [CrossRef]
- Moussallem, I.; Jörissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194. [Google Scholar] [CrossRef]
- Mavroudi, M.; Kaldis, S.P.; Sakellaropoulos, G.P. A study of mass transfer resistance in membrane gas–liquid contacting processes. J. Memb. Sci. 2006, 272, 103–115. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, B.H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 41, 109–122. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, B.C. Carbon dioxide absorption into NaOH solution in a cross-flow rotating packed bed. J. Ind. Eng. Chem. 2007, 13, 1083–1090. [Google Scholar]
- Ndiritu, H.; Kibicho, K.; Gathitu, B.B. Influence of flow parameters on capture of carbon dioxide gas by a wet scrubber. J. Power Technol. 2013, 93, 9–15. [Google Scholar]
- Zeng, Q.; Guo, Y.; Niu, Z.; Lin, W. The absorption rate of CO2 by aqueous ammonia in a packed column. Fuel Process. Technol. 2013, 108, 76–81. [Google Scholar] [CrossRef]
- Chabanon, E.; Bounaceur, R.; Castel, C.; Rode, S.; Roizard, D.; Favre, E. Pushing the limits of intensified CO2 post-combustion capture by gas–liquid absorption through a membrane contactor. Chem. Eng. Process. 2015, 91, 7–22. [Google Scholar] [CrossRef]
- Albarracin-Zaidiza, D.; Belaissaoui, B.; Roizard, D.; Favre, E.; Rode, S. Stripping of CO2 in post-combustion capture with chemical solvents: Intensification potential of hollow fiber membrane contactors. Energy Procedia 2017, 114, 1334–1341. [Google Scholar] [CrossRef]
- Favre, E.; Svendsen, H.F. Membrane contactors for intensified post-combustion carbon dioxide capture by gas–liquid absorption processes. J. Memb. Sci. 2012, 407, 1–7. [Google Scholar] [CrossRef]
Packed Column | Hollow Fiber Membrane Contactor | ||
---|---|---|---|
Parameters | Data from manufacturer | Parameters | Data from manufacturer |
Walls material | Acrylic | Membrane/Potting Material | Polypropylene/Polyethylene |
Column diameter (m) | 0.8 | Fiber i.d/o.d (μm) | 240/300 |
Column packing | Raschig rings | Wall thickness (μm) | 40 |
Raschig rings dimensions (mm × mm) | 10 × 10 | Effective pore size (μm) | 0.04 |
Raschig rings material | Glass | Porosity (%) | 40 |
Column length (m) | 1.4 | Effective fiber length (m) | 0.16 |
Raschig rings specific area (m2/m3) | 440 | Effective membrane surface area (m2) | 1.4 |
Packing volume (L) | 7 | Number of fibers | 10,200 |
Volumes | Species Concentration | |
---|---|---|
NaOH still in solution | l | |
NaOH already exhausted | E |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmón, I.R.; Cambier, N.; Luis, P. CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column and a Membrane Contactor. Appl. Sci. 2018, 8, 996. https://doi.org/10.3390/app8060996
Salmón IR, Cambier N, Luis P. CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column and a Membrane Contactor. Applied Sciences. 2018; 8(6):996. https://doi.org/10.3390/app8060996
Chicago/Turabian StyleSalmón, Israel Ruiz, Nicolas Cambier, and Patricia Luis. 2018. "CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column and a Membrane Contactor" Applied Sciences 8, no. 6: 996. https://doi.org/10.3390/app8060996
APA StyleSalmón, I. R., Cambier, N., & Luis, P. (2018). CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column and a Membrane Contactor. Applied Sciences, 8(6), 996. https://doi.org/10.3390/app8060996