Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems
Abstract
:1. Introduction
2. Methodology
2.1. Calculation Tools
2.1.1. Power Production
2.1.2. Loading
- For an accurate estimation of design loads, there are thousands of design load cases (DLCs) which must be simulated, causing a significant computational cost. Design optimization of a wind turbine requires estimations of hundreds of thousands of different turbine configurations. For this reason, a full IEC loads analysis is not computationally feasible.
- The output loads are influenced by the controller algorithm. For example, coefficients in the PID controller and pitch rates under different operational conditions can have a significant effect. Typically, we must modify many parameters of the controller to find the best controller algorithm and configuration for a given wind turbine. This is another computationally expensive aspect which limits the usefulness of automated design load analysis.
2.1.3. Cost Model
2.2. Objective Function
2.3. Design Variables and Constraints
2.4. Genetic Algorithm
3. Description of the Optimization Process
4. Results and Discussion
4.1. 2 MW Case Study
4.2. Effects of Blade Length
4.3. Economic Functions
4.4. Discussion of the Optimization Blades
4.5. Optimization of the Tower Height
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johansen, J.; Madsen, H.A.; Gaunaa, M.; Bak, C.; Sørensen, N.N. Design of a wind turbine rotor for maximum aerodynamic efficiency. Wind Energy 2009, 12, 261–273. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.G.; Wu, J.H.; Chen, G.P. Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design. Energy 2017, 120, 346–361. [Google Scholar] [CrossRef]
- Benini, E.; Toffolo, A. Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. J. Sol. Energy Eng. 2002, 124, 357–363. [Google Scholar] [CrossRef]
- Maki, K.; Sbragio, R.; Vlahopoulos, N. System design of a wind turbine using a multi-level optimization approach. Renew. Energy 2012, 43, 101–110. [Google Scholar] [CrossRef]
- Chehouri, A.; Younes, R.; Ilinca, A. Review of performance optimization techniques applied to wind turbines. Appl. Energy 2015, 142, 361–388. [Google Scholar] [CrossRef]
- Ning, A.; Damiani, R.; Moriarty, P.J. Objectives and constraints for wind turbine optimization. J. Sol. Energy Eng. 2014, 136, 041010. [Google Scholar] [CrossRef]
- Savino, M.M.; Manzini, R.; Della Selva, V.; Accorsi, R. A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines. Appl. Energy 2017, 189, 739–752. [Google Scholar] [CrossRef]
- Herbert-Acero, J.F.; Probst, O.; Réthoré, P.E.; Larsen, G.C.; Castillo-Villar, K.K. A review of methodological approaches for the design and optimization of wind farms. Energies 2014, 7, 6930–7016. [Google Scholar] [CrossRef] [Green Version]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; Technical Report NREL/TP-462-5173; National Renewable Energy Laboratory: Golden, CO, USA, 1995. [Google Scholar]
- Rodrigues, S.; Restrepo, C.; Katsouris, G.; Pinto, R.T.; Soleimanzadeh, M.; Bosman, P.; Bauer, P. A multi-objective optimization framework for offshore wind farm layouts and electric infrastructures. Energies 2016, 9, 216. [Google Scholar] [CrossRef]
- Mirghaed, M.R.; Roshandel, R. Site specific optimization of wind turbines energy cost: Iterative approach. Energy Convers. Manag. 2013, 73, 167–175. [Google Scholar] [CrossRef]
- Ashuri, T.; Zaaijer, M.B.; Martins, J.R.; van Bussel, G.J.; van Kuik, G.A. Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy. Renew. Energy 2014, 68, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Y.; Sessarego, M.; Chen, J.; Shen, W.Z. Design of the OffWindChina 5MW Wind Turbine Rotor. Energies 2017, 10, 777. [Google Scholar] [CrossRef]
- Fuglsang, P.; Madsen, H.A. Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 1999, 80, 191–206. [Google Scholar] [CrossRef]
- Dykes, K.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine; Technical Report NREL/TP-5000-61726; National Renewable Energy Laboratory: Golden, CO, USA, 2014. [Google Scholar]
- Ning, A.; Petch, D. Integrated design of downwind land-based wind turbines using analytic gradients. Wind Energy 2016, 19, 2137–2152. [Google Scholar] [CrossRef]
- Ashuri, T.; Zaaijer, M.B.; Martins, J.R.; Zhang, J. Multidisciplinary design optimization of large wind turbines—Technical, economic, and design challenges. Energy Convers. Manag. 2016, 123, 56–70. [Google Scholar] [CrossRef]
- Fuglsang, P.; Bak, C.; Schepers, J.G.; Bulder, B.; Cockerill, T.T.; Claiden, P.; Olesen, A.; van Rossen, R. Site-specific Design Optimization of Wind Turbines. Wind Energy 2002, 5, 261–279. [Google Scholar] [CrossRef]
- Hansen, M.O.L. Aerodynamics of Wind Turbines, 2nd ed.; Earthscan: London, UK, 2008. [Google Scholar]
- International Electrotechnical Committee IEC 61400-1: Wind turbines Part 1: Design Requirements, 3rd ed.; IEC: Geneva, Switzerland, 2005.
- Guo, Y.; Parsons, T.; King, R.; Dykes, K.; Veers, P. An Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components; Technical Report NREL/TP-5000-63008; National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- Díaz, G.; Gómez-Aleixandre, J.; Coto, J. Dynamic evaluation of the levelized cost of wind power generation. Energy Convers. Manag. 2015, 101, 721–729. [Google Scholar] [CrossRef]
- Tang, S.L.; Tang, H.G. The variable financial indicator IRR and the constant economic indicator NPV. Eng. Econ. 2003, 48, 69–78. [Google Scholar] [CrossRef]
- Timmer, W.A.; van Rooij, R.P.J.O.M. Summary of the Delft University wind turbine dedicated airfoils. J. Sol. Energy Eng. Trans. ASME 2003, 125, 488–496. [Google Scholar] [CrossRef]
- Ning, A.; Dykes, K. Understanding the benefits and limitations of increasing maximum rotor tip speed for utility-scale wind turbines. J. Phys. Conf. Ser. 2014, 524, 012087. [Google Scholar] [CrossRef]
- Diveux, T.; Sebastian, P.; Bernard, D.; Puiggali, J.R.; Grandidier, J.Y. Horizontal axis wind turbine systems: Optimization using genetic algorithms. Wind Energy 2001, 4, 151–171. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lu, L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Gentils, T.; Wang, L.; Kolios, A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl. Energy 2017, 199, 187–204. [Google Scholar] [CrossRef]
- Zhang, J.J.; Xu, L.W.; Gao, R.Z. Multi-island Genetic Algorithm Optimization of Suspension System. Telkomnika 2012, 10, 1685–1691. [Google Scholar] [CrossRef]
- China Wind Energy Association. China Wind Power Industry Map 2017; CWEA: Beijing, China, 2018. [Google Scholar]
- Global Wind Energy Council. Global Wind Report; GWEC: Brussels, Belgium, 2018. [Google Scholar]
- Abdulrahman, M.; Wood, D. Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation. Renew. Energy 2017, 102, 267–278. [Google Scholar] [CrossRef]
- Alam, M.M.; Rehman, S.; Meyer, J.P.; Al-Hadhrami, L.M. Review of 600–2500 kW sized wind turbines and optimization of hub height for maximum wind energy yield realization. Renew. Sustain. Energy Rev. 2011, 15, 3839–3849. [Google Scholar] [CrossRef]
Static Load Cases | Wind Speed (m/s) | Rotor Speed (rpm) | Pitch Angle (deg) | Yaw Angle (deg) | Azimuth Angle (deg) |
---|---|---|---|---|---|
SLC 1.1 | Vr + 3σ | 1.1 ωr | 0~10 | −8~+8 | 0~90 |
SLC 1.2 | Vout + 3σ | ωr | 10~20 | −8~+8 | 0~90 |
SLC 2.1 | Ve1 | 0 | 90 | 90,270 | 0 |
SLC 2.2 | Ve50 | 0 | 90 | 30,330 | 0 |
Function | Equation | Parameters |
---|---|---|
LCoE ($/kWh) | —annuity factor , r—interest rate, n—wind farm lifetime | |
NPV ($) | —market energy price | |
IRR (%) | —interest rate that zeroes the NPV equation | |
DPT (years) |
Airfoil Name | t/c Ratio |
---|---|
DU99-W-405 | 40% |
DU99-W-350 | 35% |
DU97-W-300 | 30% |
DU91-W2-250 | 25% |
DU93-W-210 | 21% |
NACA 64-618 | 18% |
Item | Value |
---|---|
Sub-Population Size | 10 |
Number of Islands | 5 |
Number of Generations | 150 |
Rate of Crossover | 0.8 |
Rate of Mutation | 0.01 |
Rate of Migration | 0.3 |
Interval of Migration | 5 |
Design Results | Blade Length (m) | Cp (-) | Capacity Factor (-) | Blade Root Mf (Nm) | Blade Mass (kg) | Hub Fx (Nm) |
---|---|---|---|---|---|---|
Optimum NPV | 70.1 | 0.463 | 0.342 | 1.58 × 107 | 17,930 | 7.44 × 105 |
Optimum LCoE | 65.4 | 0.457 | 0.312 | 1.27 × 107 | 14,552 | 6.80 × 105 |
High Cp | 65.4 | 0.487 | 0.321 | 1.40 × 107 | 17,303 | 8.63 × 105 |
Design Results | Tower Height (m) | Tower Mass (tonne) | CAPEX (1000 $) | LCoE (cents/kWh) | NVP (1000 $) | |
Optimum NPV | 105 | 369 | 2725 | 6.62 | 1295 | |
Optimum LCoE | 93 | 270 | 2377 | 6.54 | 1223 | |
High Cp | 93 | 346 | 2625 | 6.84 | 1096 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, T.; Wang, L.; Zhao, N. Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems. Appl. Sci. 2018, 8, 1668. https://doi.org/10.3390/app8091668
Wu J, Wang T, Wang L, Zhao N. Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems. Applied Sciences. 2018; 8(9):1668. https://doi.org/10.3390/app8091668
Chicago/Turabian StyleWu, Jianghai, Tongguang Wang, Long Wang, and Ning Zhao. 2018. "Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems" Applied Sciences 8, no. 9: 1668. https://doi.org/10.3390/app8091668
APA StyleWu, J., Wang, T., Wang, L., & Zhao, N. (2018). Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems. Applied Sciences, 8(9), 1668. https://doi.org/10.3390/app8091668