Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band
Abstract
:Featured Application
Abstract
1. Introduction
2. Design and Simulation
3. Analysis and Discussion
4. Experiment Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shalaev, V.M.; Cai, W.; Chettiar, U.K.; Yuan, H.-K.; Sarychev, A.K.; Drachev, V.P.; Kildishev, A.V. Negative index of refraction in optical metamaterials. Opt. Lett. 2005, 30, 3356–3358. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.M.; Yan, W.; Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 2010, 96, 101109. [Google Scholar] [CrossRef] [Green Version]
- Sima, B.; Momeni Hasan Abadi, S.M.A.; Behdad, N. A reflective-type, quasi-optical metasurface filter. J. Appl. Phys. 2017, 122. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, G.; Sun, L.; Chen, P.; Lin, L.; Liu, W.W. Tunable reflecting terahertz filter based on chirped metamaterial structure. Sci. Rep. 2016, 6, 38732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.; Yang, J.; Yin, Z. Broadband terahertz metamaterial absorber based on tantalum nitride. Appl. Opt. 2017, 56, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Faruque, M.R.I.; Islam, M.T.; Mat, K.B. A new compact octagonal shape perfect metamaterial absorber for microwave applications. Appl. Sci. 2017, 7, 1263. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Wu, X.; Xu, Y.-D. Controlling of the polarization states of electromagnetic waves using epsilon-near-zero metamaterials. Chin. Phys. Lett. 2017, 34, 084102. [Google Scholar] [CrossRef]
- Chen, H.-T.; Padilla, W.J.; Cich, M.J.; Azad, A.K.; Averitt, R.D.; Taylor, A.J. A metamaterial solid-state terahertz phase modulator. Nat. Photonics 2009, 3, 148. [Google Scholar] [CrossRef]
- Sleasman, T.; Imani, M.F.; Gollub, J.N.; Smith, D.R. Dynamic metamaterial aperture for microwave imaging. Appl. Phys. Lett. 2015, 107, 204104. [Google Scholar] [CrossRef]
- Yokogawa, S.; Burgos, S.P.; Atwater, H.A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.K.; Li, C.T.; Yen, T.J.; Lai, Y.C.; Chang, Y.T. A multi-functional plasmonic biosensor. Opt. Express 2010, 18, 9561–9569. [Google Scholar]
- O’Hara, J.F.; Singh, R.; Brener, I.; Smirnova, E.; Han, J.; Taylor, A.J.; Zhang, W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt. Express 2008, 16, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Renfors, M.; Siohan, P.; Farhang-Boroujeny, B.; Bader, F. Filter banks for next generation multicarrier wireless communications. EURASIP J. Adv. Signal Process. 2010, 2010, 324193. [Google Scholar] [CrossRef]
- Bi, K.; Zhu, W.; Lei, M.; Zhou, J. Magnetically tunable wideband microwave filter using ferrite-based metamaterials. Appl. Phys. Lett. 2015, 106, 173507. [Google Scholar] [CrossRef]
- Carver, J.; Reignault, V.; Gadot, F. Engineering of the metamaterial-based cut-band filter. Appl. Phys. A 2014, 117, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Qian, Y.; Ma, F.; Liu, Z.; Kropelnicki, P.; Lee, C. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 2013, 102, 430. [Google Scholar] [CrossRef]
- Rao, L.; Yang, D.; Zhang, L.; Li, T.; Xia, S. Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays. Appl. Opt. 2012, 51, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Zhao, Y.; Liu, H.; Teo, S.; Zhang, M.; Jun Huang, T.; Danner, A.J.; Teng, J. Annular aperture array based color filter. Appl. Phys. Lett. 2011, 99, 033105. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Plum, E.; Fedotov, V.A. Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength. Appl. Phys. Lett. 2011, 99, 627. [Google Scholar] [CrossRef]
- Liu, N.; Kaiser, S.; Giessen, H. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater. 2008, 20, 4521–4525. [Google Scholar] [CrossRef]
- Han, J.; Azad, A.K.; Gong, M.; Lu, X.; Zhang, W. Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies. Appl. Phys. Lett. 2007, 91, 071122. [Google Scholar] [CrossRef]
- Woo, J.M.; Kim, D.-S.; Kim, D.-J.; Jang, J.-H. Terahertz filter integrated with a subwavelength structured antireflection coating. AIP Adv. 2015, 5, 127238. [Google Scholar] [CrossRef] [Green Version]
- Xiong, R.H.; Li, J.S. Double-layer frequency selective surface for terahertz bandpass filter. J. Infrared Millim. Terahertz Waves 2018, 39, 1039–1046. [Google Scholar] [CrossRef]
- Zhu, Y.; Vegesna, S.; Kuryatkov, V.; Holtz, M.; Saed, M.; Bernussi, A.A. Terahertz bandpass filters using double-stacked metamaterial layers. Opt. Lett. 2012, 37, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Yang, D.; Li, T.; Liu, X.; Wang, J. Role of surface plasmon resonant modes in anomalous terahertz transmission through double-layer metal loop arrays. Opt. Lett. 2014, 39, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, Y.; Wang, P.; Deng, G.; Cai, F.; Lu, H.; Yin, Z. Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band. Appl. Sci. 2018, 8, 1669. https://doi.org/10.3390/app8091669
Yang J, Yang Y, Wang P, Deng G, Cai F, Lu H, Yin Z. Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band. Applied Sciences. 2018; 8(9):1669. https://doi.org/10.3390/app8091669
Chicago/Turabian StyleYang, Jun, Yang Yang, Peng Wang, Guangsheng Deng, Fei Cai, Hongbo Lu, and Zhiping Yin. 2018. "Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band" Applied Sciences 8, no. 9: 1669. https://doi.org/10.3390/app8091669
APA StyleYang, J., Yang, Y., Wang, P., Deng, G., Cai, F., Lu, H., & Yin, Z. (2018). Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band. Applied Sciences, 8(9), 1669. https://doi.org/10.3390/app8091669