The Intra-Class and Inter-Class Relationships in Style Transfer
Abstract
:1. Introduction
2. Background and Related Work
2.1. Convolutional Neural Network
2.2. Style Transfer
2.3. Demystifying Neural Style Transfer
3. Method
3.1. Analysis for Gram-Matrix Method
3.2. Analysis for BN Method
3.3. Cov-Matrix Method
3.4. Cov-MDE-Matrix Method
4. Results
4.1. Implementation Details
4.2. Result Comparisons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 327–340. [Google Scholar]
- Efros, A.A.; Leung, T.K. Texture synthesis by non-parametric sampling. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1033–1038. [Google Scholar]
- Efros, A.A.; Freeman, W.T. Image quilting for texture synthesis and transfer. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 341–346. [Google Scholar] [Green Version]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Demystifying neural style transfer. arXiv, 2017; arXiv:1701.01036. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Karpathy, A.; Fei-Fei, L. Deep Visual-Semantic Alignments for Generating Image Descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 664–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Gooch, B.; Gooch, A. Non-Photorealistic Rendering; AK Peters/CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rosin, P.; Collomosse, J. Image and Video-Based Artistic Stylisation; Springer Science & Business Media: Berlin, Germany, 2012; Volume 42. [Google Scholar]
- Strothotte, T.; Schlechtweg, S. Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation; Morgan Kaufmann: San Francisco, CA, USA, 2002. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv, 2015; arXiv:1508.06576. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution; European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 694–711. [Google Scholar]
- Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V.S. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1349–1357. [Google Scholar]
- Ruder, M.; Dosovitskiy, A.; Brox, T. Artistic Style Transfer for Videos; German Conference on Pattern Recognition; Springer: Cham, Switzerland, 2016; pp. 26–36. [Google Scholar]
- Huang, H.; Wang, H.; Luo, W.; Ma, L.; Jiang, W.; Zhu, X.; Li, Z.; Liu, W. Real-Time Neural Style Transfer for Videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7044–7052. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv, 2016; arXiv:1607.08022. [Google Scholar]
- Selim, A.; Elgharib, M.; Doyle, L. Painting style transfer for head portraits using convolutional neural networks. ACM Trans. Gr. 2016, 35, 1–18. [Google Scholar] [CrossRef]
- Champandard, A.J. Semantic style transfer and turning two-bit doodles into fine artworks. arXiv, 2016; arXiv:1603.01768. [Google Scholar]
- Li, C.; Wand, M. Combining markov random fields and convolutional neural networks for image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2479–2486. [Google Scholar]
- Chen, T.Q.; Schmidt, M. Fast Patch-based Style Transfer of Arbitrary Style. arXiv, 2016; arXiv:1612.04337. [Google Scholar]
- Chen, D.; Yuan, L.; Liao, J.; Yu, N.; Hua, G. StyleBank: An Explicit Representation for Neural Image Style Transfer. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2770–2779. [Google Scholar]
- Liao, J.; Yao, Y.; Yuan, L.; Hua, G.; Kang, S.B. Visual Attribute Transfer Through Deep Image Analogy. ACM Trans. Gr. 2017, 36, 120:1–120:15. [Google Scholar] [CrossRef]
- Gatys, L.A.; Bethge, M.; Hertzmann, A.; Shechtman, E. Preserving Color in Neural Artistic Style Transfer; Technical Report. arXiv, 2016; arXiv:1606.05897. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M.; Hertzmann, A.; Shechtman, E. Controlling Perceptual Factors in Neural Style Transfer. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3730–3738. [Google Scholar]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Zorzi, M. Multivariate Spectral Estimation Based on the Concept of Optimal Prediction. IEEE Trans. Autom. Control 2015, 60, 1647–1652. [Google Scholar] [CrossRef] [Green Version]
- Zorzi, M. An interpretation of the dual problem of the THREE-like approaches. Automatica 2015, 62, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Qi, M.; Niu, Y.; Li, B. The Intra-Class and Inter-Class Relationships in Style Transfer. Appl. Sci. 2018, 8, 1681. https://doi.org/10.3390/app8091681
Cui X, Qi M, Niu Y, Li B. The Intra-Class and Inter-Class Relationships in Style Transfer. Applied Sciences. 2018; 8(9):1681. https://doi.org/10.3390/app8091681
Chicago/Turabian StyleCui, Xin, Meng Qi, Yi Niu, and Bingxin Li. 2018. "The Intra-Class and Inter-Class Relationships in Style Transfer" Applied Sciences 8, no. 9: 1681. https://doi.org/10.3390/app8091681
APA StyleCui, X., Qi, M., Niu, Y., & Li, B. (2018). The Intra-Class and Inter-Class Relationships in Style Transfer. Applied Sciences, 8(9), 1681. https://doi.org/10.3390/app8091681