Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Process of PSLC Device
2.3. Electro-Optical Property Characterization
3. Results and Discussion
3.1. Effect of Ag Nanowires on the Driving Voltage of PSLC Devices
3.2. Effect of Ag Nanowires on Response Time of PSLC Devices
3.3. Effect of Ag Nanowires on Frequency Response of PSLC Devices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Lampert, C.M. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489–499. [Google Scholar] [CrossRef]
- Kirton, J. The physics of liquid crystals. Opt. ACTA Int. J. Opt. 1975, 22, 158. [Google Scholar] [CrossRef]
- Bahadur, B. Liquid crystals—Applications and uses. J. Soc. Inf. Disp. 2012, 2, 63–64. [Google Scholar] [CrossRef]
- Collings, P.J.; Hird, M. Introduction to liquid crystals: Chemistry and physics. Am. J. Phys. 1998, 66, 551. [Google Scholar] [CrossRef]
- Deb, S.K. A novel electrophotographic system. Appl. Optics 1969, 8 (Suppl. 1), 192–195. [Google Scholar] [CrossRef]
- Macrelli, G. Optical characterization of commercial large area liquid crystal devices. Sol. Energy Mater. Sol. Cells 1995, 39, 123–131. [Google Scholar] [CrossRef]
- Yang, D.K.; Chien, L.C.; Doane, J.W. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters. Appl. Phys. Lett. 1992, 60, 3102–3104. [Google Scholar] [CrossRef]
- Chiu, H.W.; Kyu, T. Equilibrium phase behavior of nematic mixtures. J. Chem. Phys. 1995, 103, 7471–7481. [Google Scholar] [CrossRef]
- Dierking, I. Polymer network–stabilized liquid crystals. Adv. Mater. 2010, 12, 167–181. [Google Scholar] [CrossRef]
- Hinojosa, A.; Sharma, S.C. Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal. Appl. Phys. Lett. 2010, 97, 081114. [Google Scholar] [CrossRef]
- Dierking, I. Recent developments in polymer stabilised liquid crystals. Polym. Chem. 2010, 1, 1153–1159. [Google Scholar] [CrossRef]
- Pande, M.; Tripathi, P.K.; Misra, A.K.; Manohar, S.; Manohar, R.; Singh, S. Dielectric and electro-optical properties ofpolymer-stabilized liquid crystal system. Appl. Phys. A 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Sun, J.; Wu, S.-T. Recent advances in polymer network liquid crystal spatial light modulators. J. Polym. Sci. Part B Polym. Phys. 2013, 52, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Rao, L.; Jiao, M.; Li, Y.; Cheng, H.-C.; Wu, S.-T. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J. Mater. Chem. 2011, 21, 7870–7877. [Google Scholar] [CrossRef]
- Zou, J.; Fang, J. Adhesive polymer-dispersed liquid crystal films. J. Mater. Chem. 2011, 21, 9149–9153. [Google Scholar] [CrossRef]
- Kumar, S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014, 6, e82. [Google Scholar] [CrossRef]
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Zribi, O.; Glushchenko, A. Emerging applications of ferroelectric nanoparticles in materials technologies, biology and medicine. In Advances in Ferroelectrics; IntechOpen: London, UK, 2013; pp. 475–497. [Google Scholar] [CrossRef]
- Singh, U.B.; Dhar, R.; Dabrowski, R.; Pandey, M.B. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq. Cryst. 2013, 40, 774–782. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, I. Nano-objects and ions in liquid crystals: Ion trapping effect and related phenomena. Crystals 2015, 5, 501–533. [Google Scholar] [CrossRef]
- Chou, T.-R.; Hsieh, J.; Chen, W.-T.; Chao, C.-Y. Influence of particle size on the ion effect of TiO2 nanoparticle doped nematic liquid crystal cell. Jpn. J. Appl. Phys. 2014, 53, 071701. [Google Scholar] [CrossRef]
- Haraguchi, F.; Inoue, K.I.; Toshima, N.; Kobayashi, S.; Takatoh, K. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. Jpn. J. Appl. Phys. 2007, 46, 796–797. [Google Scholar] [CrossRef]
- Jung, H.-Y.; Kim, H.-J.; Yang, S.; Kang, Y.-G.; Oh, B.-Y.; Park, H.-G.; Seo, D.-S. Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices. Liq. Cryst. 2012, 39, 789–793. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A. Surface plasmon subwavelength optics. Nature 2003, 424, 824. [Google Scholar] [CrossRef] [PubMed]
- Yaroshchuk, O.V.; Dolgov, L.O. Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials. Opt. Mater. 2007, 29, 1097–1102. [Google Scholar] [CrossRef]
- Yaroshchuk, O.V.; Dolgov, L.O.; Kiselev, A.D. Electro-optics and structural peculiarities of liquid crystal-nanoparticle-polymer composites. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 72. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, J.J.; Lim, Y.J.; Kundu, S.; Kang, S.-W.; Lee, S.H. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network. Opt. Express 2013, 21, 26914–206920. [Google Scholar] [CrossRef]
- Choi, B.; Song, S.; Jeong, S.M.; Shung, S.-H.; Glushchenko, A. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals. Opt. Express 2014, 22, 18027–18035. [Google Scholar] [CrossRef]
- Choi, B.; Yang, K.J.; Chung, S.H. Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite. Opt. Mater. Express 2014, 4, 1824–1832. [Google Scholar] [CrossRef]
- Cho, Y.H.; He, M.; Kim, B.K. Improvement of holographic performance by novel photopolymer systems with siloxane-containing epoxides. Sci. Technol. Adv. Mater. 2004, 5, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Kim, C.S.; Jo, S. Spray deposition of Ag nanowire–graphene oxide hybrid electrodes for flexible polymer–dispersed liquid crystal displays. Materials 2018, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cong, Y.; Zhang, B. Preparation and characterisation: PSCLC film doping with FexNiy nanoparticles. Liq. Cryst. 2015, 42, 167–173. [Google Scholar] [CrossRef]
- Sannicolo, T.; Lagrange, M.; Cabos, A. Metallic nanowire-based transparent electrodes for next generation flexible devices: A review. Small 2016, 12, 6052–6075. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Chung, H.K.; Park, H.G. Residual DC voltage-free behaviour of liquid crystal system with nickel nanoparticle dispersion. Liq. Cryst. 2014, 41, 247–251. [Google Scholar] [CrossRef]
- Yong-Seok, H.; Hyung-Jun, K.; Hong-Gyu, P. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Express 2012, 20, 6448–6455. [Google Scholar] [CrossRef]
- Shin-Ying, L.; Liang-Chy, C. Carbon nanotube doped liquid crystal OCB cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785. [Google Scholar] [CrossRef]
Experimental Materials | Concentration |
---|---|
Negative LC | 96.5 wt.% |
RM82 | 3 wt.% |
IR651 | 0.5 wt.% |
Silver nanowires | 0.01, 0.02, 0.05, 0.1 wt.% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Liu, W.; Zhou, Y.; Yuan, D.; Hu, X.; Zhao, W.; Zhou, G. Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping. Appl. Sci. 2019, 9, 145. https://doi.org/10.3390/app9010145
Yan X, Liu W, Zhou Y, Yuan D, Hu X, Zhao W, Zhou G. Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping. Applied Sciences. 2019; 9(1):145. https://doi.org/10.3390/app9010145
Chicago/Turabian StyleYan, Xudong, Wei Liu, Yong Zhou, Dong Yuan, Xiaowen Hu, Wei Zhao, and Guofu Zhou. 2019. "Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping" Applied Sciences 9, no. 1: 145. https://doi.org/10.3390/app9010145
APA StyleYan, X., Liu, W., Zhou, Y., Yuan, D., Hu, X., Zhao, W., & Zhou, G. (2019). Improvement of Electro-Optical Properties of PSLC Devices by Silver Nanowire Doping. Applied Sciences, 9(1), 145. https://doi.org/10.3390/app9010145