Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Preparation
3.2. Weight of Evidence
3.3. Logistic Regression
3.4. Random Forest
4. Results
4.1. Correlation Analysis
4.2. Application of the WoE Model
4.3. Application of the WoE-LR Model
4.4. Application of the WoE-RF Model
4.5. Validation of Landslide Models
5. Discussions
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, M.S.; Onda, Y.; Kim, J.K.; Kim, S.W. Effect of topography and soil parameterisation representing soil thicknesses on shallow landslide modelling. Quat. Int. 2015, 384, 91–106. [Google Scholar] [CrossRef]
- Liucci, L.; Melelli, L.; Suteanu, C.; Ponziani, F. The role of topography in the scaling distribution of landslide areas: A cellular automata modeling approach. Geomorphology 2017, 290, 236–249. [Google Scholar] [CrossRef]
- Agostini, A.; Tofani, V.; Nolesini, T.; Gigli, G.; Tanteri, L.; Rosi, A.; Cardellini, S.; Casagli, N. A new appraisal of the ancona landslide based on geotechnical investigations and stability modelling. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 29–43. [Google Scholar] [CrossRef]
- Peng, D.; Xu, Q.; Liu, F.; He, Y.; Zhang, S.; Qi, X.; Zhao, K.; Zhang, X. Distribution and failure modes of the landslides in heitai terrace, china. Eng. Geol. 2018, 236, 97–110. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 2017, 574, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-M.; Chen, H.; Jou, B.J.-D.; Tsou, N.-C.; Lin, G.-W. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in taiwan. Eng. Geol. 2017, 231, 81–87. [Google Scholar] [CrossRef]
- Segoni, S.; Rosi, A.; Lagomarsino, D.; Fanti, R.; Casagli, N. Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat. Hazards Earth Syst. Sci. 2018, 18, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Vanapalli, S.K.; Li, T. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in heifangtai loess highland, china. Eng. Geol. 2018, 234, 27–37. [Google Scholar] [CrossRef]
- Wang, T.; Wu, S.R.; Shi, J.S.; Xin, P.; Wu, L.Z. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the wei river midstream. Eng. Geol. 2018, 235, 11–19. [Google Scholar] [CrossRef]
- Mohammadi, S.; Taiebat, H. Finite element simulation of an excavation-triggered landslide using large deformation theory. Eng. Geol. 2016, 205, 62–72. [Google Scholar] [CrossRef]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of climate change on landslide hazard in central italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Peres, D.J.; Cancelliere, A. Modeling impacts of climate change on return period of landslide triggering. J. Hydrol. 2018, 567, 420–434. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Teimoori Yansari, Z.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Lee, S.; Dan, N.T. Probabilistic landslide susceptibility mapping in the lai chau province of vietnam: Focus on the relationship between tectonic fractures and landslides. Environ. Geol. 2005, 48, 778–787. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Lee, Y.H.; Tan, X.; Yu, G.; Dai, F. The 2010 yushu earthquake triggered landslide hazard mapping using gis and weight of evidence modeling. Environ. Earth Sci. 2012, 66, 1603–1616. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by sbas-insar monitoring: Zhouqu to wudu segment in bailong river basin, china. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, K. Bivariate statistical index for landslide susceptibility mapping in the rorachu river basin of eastern sikkim himalaya, india. Spat. Inf. Res. 2018, 26, 59–75. [Google Scholar] [CrossRef]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in central nepal himalaya. Arab. J. Geosci. 2014, 7, 725–742. [Google Scholar] [CrossRef]
- Jaafari, A.; Najafi, A.; Pourghasemi, H.R.; Rezaeian, J.; Sattarian, A. Gis-based frequency ratio and index of entropy models for landslide susceptibility assessment in the caspian forest, northern iran. Int. J. Environ. Sci. Technol. 2014, 11, 909–926. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.; Panahi, M.; Hong, H.; et al. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef]
- Hong, H.; Chen, W.; Xu, C.; Youssef, A.M.; Pradhan, B.; Tien Bui, D. Rainfall-induced landslide susceptibility assessment at the chongren area (china) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 2017, 32, 139–154. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Chai, H.; Hou, E.; Li, X.; Ding, X. Gis-based landslide susceptibility mapping using analytical hierarchy process (ahp) and certainty factor (cf) models for the baozhong region of baoji city, china. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Dou, J.; Oguchi, T.; Hayakawa, Y.S.; Uchiyama, S.; Saito, H.; Paudel, U. Gis-based landslide susceptibility mapping using a certainty factor model and its validation in the chuetsu area, central japan. In Landslide Science for a Aafer Geoenvironment; Springer: New York, NY, USA, 2014; pp. 419–424. [Google Scholar]
- Chen, W.; Shahabi, H.; Shirzadi, A.; Hong, H.; Akgun, A.; Tian, Y.; Liu, J.; Zhu, A.-X.; Li, S. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 2018, 1–23. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Kim, Y.-T. Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at mt. Umyeon, seoul, korea. Bull. Eng. Geol. Environ. 2017, 76, 1263–1279. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, W.; Hong, H. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. 2017, 32, 619–639. [Google Scholar] [CrossRef]
- Zhang, T.; Han, L.; Chen, W.; Shahabi, H. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy 2018, 20, 884. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, K. Modeling and mapping landslide susceptibility zones using gis based multivariate binary logistic regression (lr) model in the rorachu river basin of eastern sikkim himalaya, india. Modeling Earth Syst. Environ. 2018, 4, 69–88. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the gis-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at wadi tayyah basin, asir region, saudi arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling applying machine learning methods: A case study from longju in the three gorges reservoir area, china. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Prakash, I.; Bui, D.T. A novel hybrid intelligent model of support vector machines and the multiboost ensemble for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 2018, 1–22. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.X.; Chen, W.; Ahmad, B.B. Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the guangchang area (china). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Shirzadi, A.; Li, T.; Guo, C.; Hong, H.; Li, W.; Pan, D.; Hui, J.; Ma, M.; et al. A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto Int. 2018, 33, 1398–1420. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H.; et al. Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl. Sci. 2018, 8, 2540. [Google Scholar] [CrossRef]
- Truong, X.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, X.; Do, T.; Tien Bui, D.; Lee, S. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at himalayan area (india) using gis. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Pham, B.T.; Shirzadi, A.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the himalayan area, india. Int. J. Sediment. Res. 2017. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ann, maxent, and svm machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Tien Bui, D. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology 2018, 303, 256–270. [Google Scholar] [CrossRef]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. Gis-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in iran. Environ. Earth Sci. 2016, 75, 665. [Google Scholar] [CrossRef]
- Lagomarsino, D.; Tofani, V.; Segoni, S.; Catani, F.; Casagli, N. A tool for classification and regression using random forest methodology: Applications to landslide susceptibility mapping and soil thickness modeling. Environ. Modeling Assess. 2017, 22, 201–214. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Ho, T.-C.; Pradhan, B.; Pham, B.-T.; Nhu, V.-H.; Revhaug, I. Gis-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with adaboost, bagging, and multiboost ensemble frameworks. Environ. Earth Sci. 2016, 75, 1101. [Google Scholar] [CrossRef]
- Xia, C.-k.; Su, C.-l.; Cao, J.-t.; Li, P. Multiboost with enn-based ensemble fault diagnosis method and its application in complicated chemical process. J. Cent. South. Univ. 2016, 23, 1183–1197. [Google Scholar] [CrossRef]
- Pham, B.T.; Shirzadi, A.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the himalayan area, india. Int. J. Sediment. Res. 2018, 33, 157–170. [Google Scholar] [CrossRef]
- Fanos, A.M.; Pradhan, B.; Mansor, S.; Yusoff, Z.M.; Abdullah, A.F.b. A hybrid model using machine learning methods and gis for potential rockfall source identification from airborne laser scanning data. Landslides 2018, 15, 1833–1850. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Panahi, S.; Li, S.; Jaafari, A.; Ahmad, B.B. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. CATENA 2019, 172, 212–231. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Moghaddam, D.D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment of gis-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 2017, 548, 471–483. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C.; et al. Gis-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Kadavi, P.; Lee, C.-W.; Lee, S. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Peng, J.; Shahabi, H.; Hong, H.; Bui, D.T.; Duan, Z.; Li, S.; Zhu, A.X. Gis-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. CATENA 2018, 164, 135–149. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Pourghasemi, H.R. A novel hybrid bivariate statistical method entitled froc for landslide susceptibility assessment. Environ. Earth Sci. 2018, 77, 686. [Google Scholar] [CrossRef]
- Fell, R.; Glastonbury, J.; Hunter, G. Rapid landslides: The importance of understanding mechanisms and rupture surface mechanics. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 9–27. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Stefanelli, C.T.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of tuscany (italy) updated with ps-insar: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Li, J.; Xu, Z.W. Assessment of landslide susceptibility on the natural terrain of lantau island, hong kong. Environ. Geol. 2001, 40, 381–391. [Google Scholar]
- Nefeslioglu, H.A.; Duman, T.Y.; Durmaz, S. Landslide susceptibility mapping for a part of tectonic kelkit valley (eastern black sea region of turkey). Geomorphology 2008, 94, 401–418. [Google Scholar] [CrossRef]
- Pham, B.T.; Khosravi, K.; Prakash, I. Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at pauri garhwal area, uttarakhand, india. Environ. Process. 2017, 4, 711–730. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Liu, P.; Bai, H.; Wang, Q.; He, J.; Liu, Y.; Sun, S. Application of analytic hierarchy process model for landslide susceptibility mapping in the gangu county, gansu province, china. Environ. Earth Sci. 2016, 75, 422. [Google Scholar] [CrossRef]
- Saadatkhah, N.; Kassim, A.; Lee, L.M. Susceptibility assessment of shallow landslides in hulu kelang area, kuala lumpur, malaysia using analytical hierarchy process and frequency ratio. Geotech. Geol. Eng. 2015, 33, 43–57. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of gis-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of ambon, indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Riaz Muhammad, T.; Basharat, M.; Hameed, N.; Shafique, M.; Luo, J. A data-driven approach to landslide-susceptibility mapping in mountainous terrain: Case study from the northwest himalayas, pakistan. Nat. Hazards Rev. 2018, 19, 05018007. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Hou, E.; Bai, H.; Chai, H.; Wang, D.; Cui, X.; Wang, Q. Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the baozhong region of baoji, china. Arab. J. Geosci. 2015, 8, 1829–1841. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.-X.; Pei, X.; Duan, Z. Landslide susceptibility modelling using gis-based machine learning techniques for chongren county, jiangxi province, china. Sci. Total Environ. 2018, 626, 1121–1135. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Int. Assoc. Sci. Hydrol. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, H.; Zhao, B.; Tang, H.; Lin, Z.; Xie, Z.; Lv, L.; Zhong, P. A comparison of five methods in landslide susceptibility assessment: A case study from the 330-kv transmission line in gansu region, china. Environ. Earth Sci. 2018, 77, 662. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Y.; Yang, Y.; Chen, F.; Zhang, N.; Ke, Y.; Li, W. A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models. Arab. J. Geosci. 2017, 10, 187. [Google Scholar] [CrossRef]
- Yalcin, A. Gis-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in ardesen (turkey): Comparisons of results and confirmations. CATENA 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X.; Zhao, Z.; Hong, H.; Bui, D.T.; Pradhan, B. Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive bayes and rbfnetwork models for the long county area (china). Bull. Eng. Geol. Environ. 2018, 1–20. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.; Xu, X.; Lee, Y.H. Gis-based support vector machine modeling of earthquake-triggered landslide susceptibility in the jianjiang river watershed, China. Geomorphology 2012, 145–146, 70–80. [Google Scholar] [CrossRef]
- Ohlmacher, G.C.; Davis, J.C. Using multiple logistic regression and gis technology to predict landslide hazard in northeast kansas, USA. Eng. Geol. 2003, 69, 331–343. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Shahid, S. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environ. Monit. Assess. 2015, 187, 576. [Google Scholar] [CrossRef]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Masi, E.B.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef]
- Peng, J.; Tong, X.; Wang, S.; Ma, P. Three-dimensional geological structures and sliding factors and modes of loess landslides. Environ. Earth Sci. 2018, 77, 675. [Google Scholar] [CrossRef]
- Santo, A.; Di Crescenzo, G.; Forte, G.; Papa, R.; Pirone, M.; Urciuoli, G. Flow-type landslides in pyroclastic soils on flysch bedrock in southern italy: The bosco de’ preti case study. Landslides 2018, 15, 63–82. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from new zealand. CATENA 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Cui, S.-H.; Pei, X.-J.; Wu, H.-Y.; Huang, R.-Q. Centrifuge model test of an irrigation-induced loess landslide in the heifangtai loess platform, northwest china. J. Mt. Sci. 2018, 15, 130–143. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Tien Bui, D.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Ohta, T. Runoff process on a steep forested slope. J. Hydrol. 1988, 102, 165–178. [Google Scholar] [CrossRef]
- Agterberg, F.P. Systematic approach to dealing with uncertainty of geoscience information in mineral exploration. APCO 1989, 89, 165–178. [Google Scholar]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. Gis-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [Google Scholar] [CrossRef]
- Lachenbruch, P.A.; Mccullagh, P.; Nelder, J.A. Generalized linear models. Biometrics 1990, 46, 291–303. [Google Scholar] [CrossRef]
- Agarwal, S.; Kachroo, P.; Regentova, E. A hybrid model using logistic regression and wavelet transformation to detect traffic incidents. IATSS Res. 2016, 40, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Ravì, D.; Bober, M.; Farinella, G.M.; Guarnera, M.; Battiato, S. Semantic segmentation of images exploiting dct based features and random forest. Pattern Recognit. 2016, 52, 260–273. [Google Scholar] [CrossRef]
- Masetic, Z.; Subasi, A. Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 2016, 130, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ozdemir, A. Landslide susceptibility mapping using bayesian approach in the sultan mountains (akşehir, turkey). Nat. Hazards 2011, 59, 1573–1607. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Peng, J.; Wang, J.; Duan, Z.; Hong, H. Gis-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, naïve-bayes tree, and alternating decision tree models. Geomat. Nat. Hazards Risk 2017, 8, 950–973. [Google Scholar] [CrossRef]
- Lin, G.-F.; Chang, M.-J.; Huang, Y.-C.; Ho, J.-Y. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Eng. Geol. 2017, 224, 62–74. [Google Scholar] [CrossRef]
- Lee, J.-H.; Sameen, M.I.; Pradhan, B.; Park, H.-J. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. Geomorphology 2018, 303, 284–298. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, S.; Land, K.C. Multicollinearity in hierarchical linear models. Soc. Sci. Res. 2015, 53, 118–136. [Google Scholar] [CrossRef]
- Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan mountains, sw turkey. J. Asian Earth Sci. 2013, 64, 180–197. [Google Scholar] [CrossRef]
- Ozdemir, A. Gis-based groundwater spring potential mapping in the sultan mountains (konya, turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Chen, W.; Xu, C. Comparing the Performance of a Logistic Regression and a Random Forest Model in Landslide Susceptibility Assessments. the Case of Wuyaun Area, China. In Workshop on World Landslide Forum; Mikos, M., Tiwari, B., Yin, Y., Eds.; Springer: Cham, Switzerland, 2017; pp. 1043–1050. [Google Scholar]
- Pham, B.T.; Pradhan, B.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of uttarakhand area (india). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Hoang, N.-D.; Thanh, N.Q.; Nguyen, D.B.; Van Liem, N.; Pradhan, B. Spatial prediction of rainfall-induced landslides for the lao cai area (vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 2017, 14, 447–458. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. Prioritization of landslide conditioning factors and its spatial modeling in shangnan county, china using gis-based data mining algorithms. Bull. Eng. Geol. Environ. 2018, 77, 611–629. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in china. Bull. Eng. Geol. Environ. 2018, 77, 647–664. [Google Scholar] [CrossRef]
- He, S.; Pan, P.; Dai, L.; Wang, H.; Liu, J. Application of kernel-based fisher discriminant analysis to map landslide susceptibility in the qinggan river delta, three gorges, china. Geomorphology 2012, 171, 30–41. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Pourghasemi, H.R. Performance evaluation of gis-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (anfis) with genetic algorithm (ga), differential evolution (de), and particle swarm optimization (pso) for landslide spatial modelling. CATENA 2017, 157, 310–324. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Wu, Y.; Pei, Y.; Xie, P. Application of statistical index and index of entropy methods to landslide susceptibility assessment in gongliu (xinjiang, china). Environ. Earth Sci. 2016, 75, 599. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Chen, W.; Shirzadi, A.; Shahabi, H.; Ahmad, B.B.; Zhang, S.; Hong, H.; Zhang, N. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve bayes tree classifiers for a landslide susceptibility assessment in langao county, china. Geomat. Nat. Hazards Risk 2017, 8, 1955–1977. [Google Scholar] [CrossRef]
- Ilia, I.; Tsangaratos, P. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 2016, 13, 379–397. [Google Scholar] [CrossRef]
- Polykretis, C.; Chalkias, C. Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Nat. Hazards 2018. [Google Scholar] [CrossRef]
- Lee, S. Landslide detection and susceptibility mapping in the sagimakri area, korea using kompsat-1 and weight of evidence technique. Environ. Earth Sci. 2013, 70, 3197–3215. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Baeza, C.; Lantada, N.; Amorim, S. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ. Earth Sci. 2016, 75, 1318. [Google Scholar] [CrossRef]
- Akgun, A.; Sezer, E.A.; Nefeslioglu, H.A.; Gokceoglu, C.; Pradhan, B. An easy-to-use matlab program (mamland) for the assessment of landslide susceptibility using a mamdani fuzzy algorithm. Comput. Geosci. 2012, 38, 23–34. [Google Scholar] [CrossRef]
- Kumar, R.; Anbalagan, R. Landslide susceptibility mapping using analytical hierarchy process (ahp) in tehri reservoir rim region, uttarakhand. J. Geol. Soc. India 2016, 87, 271–286. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in iran: A comparison between shannon(‘)s entropy, statistical index, and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef] [PubMed]
- Kleinbaum, D.G.; Klein, M. Introduction to logistic regression. In Logistic Regression: A Self-Learning Text; Kleinbaum, D.G., Ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C.; Villa-Vialaneix, N. Random forests for big data. Big Data Res. 2017, 9, 28–46. [Google Scholar] [CrossRef]
Factors | Class | No. of Landslide | No. of Pixels in Domain | W+ | W− | Wf |
---|---|---|---|---|---|---|
Slope angle (°) | 0–10 | 36 | 738,360 | 0.077 | −0.025 | 0.102 |
10–20 | 63 | 914,163 | 0.423 | −0.246 | 0.669 | |
20–30 | 29 | 821,142 | −0.246 | 0.075 | −0.320 | |
30–40 | 11 | 468,077 | −0.653 | 0.081 | −0.734 | |
40–50 | 2 | 155,377 | −1.255 | 0.037 | −1.292 | |
50–60 | 0 | 24,357 | 0.000 | 0.008 | 0.000 | |
60–72.83 | 0 | 1710 | 0.000 | 0.001 | 0.000 | |
Slope aspect | Flat | 0 | 874 | 0.000 | 0.000 | 0.000 |
North | 16 | 443,863 | −0.225 | 0.033 | −0.258 | |
Northeast | 16 | 405,251 | −0.134 | 0.019 | −0.153 | |
East | 17 | 376,207 | 0.001 | 0.000 | 0.001 | |
Southeast | 23 | 390,547 | 0.266 | −0.044 | 0.310 | |
South | 32 | 374,222 | 0.639 | −0.130 | 0.769 | |
Southwest | 13 | 344,928 | −0.181 | 0.020 | −0.201 | |
West | 9 | 354,647 | −0.576 | 0.055 | −0.631 | |
Northwest | 15 | 432,647 | −0.264 | 0.037 | −0.301 | |
Elevation (m) | 442–600 | 28 | 413,571 | 0.405 | −0.079 | 0.485 |
600–800 | 48 | 512,157 | 0.730 | −0.237 | 0.968 | |
800–1000 | 31 | 377,619 | 0.598 | −0.119 | 0.717 | |
1000–1200 | 17 | 326,381 | 0.143 | −0.018 | 0.161 | |
1200–1400 | 15 | 398,407 | −0.182 | 0.024 | −0.206 | |
1400–1600 | 2 | 385,439 | −2.163 | 0.117 | −2.281 | |
1600–1800 | 0 | 376,083 | 0.000 | 0.128 | 0.000 | |
1800–2000 | 0 | 247,350 | 0.000 | 0.083 | 0.000 | |
2000–2200 | 0 | 78,216 | 0.000 | 0.025 | 0.000 | |
2200–2410 | 0 | 7963 | 0.000 | 0.003 | 0.000 | |
Plan curvature | −14.0– −0.05 | 58 | 144,0116 | −0.114 | 0.088 | −0.203 |
−0.05–0.05 | 13 | 215,290 | 0.291 | −0.025 | 0.316 | |
0.05–13.07 | 70 | 1,467,780 | 0.055 | −0.051 | 0.106 | |
Profile curvature | −14.28–−0.05 | 66 | 1,428,952 | 0.023 | −0.020 | 0.042 |
−0.05–0.05 | 16 | 177,891 | 0.689 | −0.062 | 0.751 | |
0.05–14.77 | 59 | 1,516,343 | −0.149 | 0.123 | −0.271 | |
TWI | <4 | 11 | 558,428 | −0.829 | 0.116 | −0.945 |
4–5 | 50 | 1,000,955 | 0.101 | −0.052 | 0.153 | |
5–6 | 48 | 746,522 | 0.354 | −0.143 | 0.497 | |
6–7 | 20 | 393,490 | 0.119 | −0.018 | 0.137 | |
>7 | 12 | 423,791 | −0.467 | 0.057 | −0.523 | |
SPI | <20 | 88 | 1,740,663 | 0.113 | −0.164 | 0.277 |
20–40 | 20 | 497,521 | −0.116 | 0.021 | −0.137 | |
40–60 | 12 | 231,236 | 0.139 | −0.012 | 0.151 | |
60–80 | 5 | 133,800 | −0.189 | 0.008 | −0.197 | |
>80 | 16 | 519,966 | −0.383 | 0.062 | −0.445 | |
STI | <10 | 90 | 1,722,652 | 0.146 | −0.215 | 0.361 |
10–20 | 32 | 702,426 | 0.009 | −0.003 | 0.012 | |
20–30 | 6 | 295,062 | −0.798 | 0.056 | −0.853 | |
30–40 | 5 | 141,300 | −0.244 | 0.010 | −0.254 | |
>40 | 8 | 261,746 | −0.390 | 0.029 | −0.419 | |
Distance to rivers (m) | <200 | 27 | 521,129 | 0.138 | −0.030 | 0.168 |
200–400 | 22 | 463,390 | 0.050 | −0.009 | 0.059 | |
400–600 | 18 | 427,717 | −0.070 | 0.011 | −0.081 | |
600–800 | 19 | 374,831 | 0.116 | −0.017 | 0.133 | |
>800 | 55 | 1,336,119 | −0.092 | 0.064 | −0.156 | |
Distance to roads (m) | <300 | 33 | 343,852 | 0.754 | −0.150 | 0.904 |
300–600 | 16 | 279,559 | 0.237 | −0.027 | 0.264 | |
600–900 | 8 | 245,226 | −0.325 | 0.023 | −0.348 | |
900–1200 | 15 | 219,752 | 0.413 | −0.040 | 0.453 | |
>1200 | 69 | 2,034,797 | −0.286 | 0.382 | −0.668 | |
Distance to faults (m) | <1000 | 32 | 671,796 | 0.054 | −0.015 | 0.069 |
1000–2000 | 18 | 503,008 | −0.232 | 0.039 | −0.271 | |
2000–3000 | 21 | 412,189 | 0.121 | −0.020 | 0.141 | |
3000–4000 | 8 | 348,794 | −0.677 | 0.060 | −0.737 | |
>4000 | 62 | 1,187,399 | 0.145 | −0.101 | 0.246 | |
Soil | Cumulic Anthrosol | 20 | 360,361 | 0.206 | −0.030 | 0.237 |
Dystric Cambisol | 4 | 113,893 | −0.251 | 0.008 | −0.259 | |
Eutric Cambisol | 31 | 249,592 | 1.012 | −0.165 | 1.177 | |
Calcaric Fluvisol | 0 | 37,035 | 0.000 | 0.012 | 0.000 | |
Haplic Luvisol | 80 | 2,211,459 | −0.222 | 0.393 | −0.615 | |
Chromic Luvisol | 0 | 10,045 | 0.000 | 0.003 | 0.000 | |
Eutric Planosol | 3 | 14,836 | 1.500 | −0.017 | 1.516 | |
Calcaric Regosol | 1 | 82,141 | −1.311 | 0.020 | −1.330 | |
Eutric Regosol | 2 | 43,824 | 0.011 | 0.000 | 0.011 | |
Land use | Farmland | 86 | 90,0284 | 0.750 | −0.601 | 1.351 |
Forestland | 4 | 96,7369 | −2.390 | 0.342 | −2.732 | |
Grassland | 51 | 1,202,442 | −0.062 | 0.037 | −0.100 | |
Water | 0 | 18,838 | 0.000 | 0.006 | 0.000 | |
Residential areas | 0 | 33,563 | 0.000 | 0.011 | 0.000 | |
Bareland | 0 | 690 | 0.000 | 0.000 | 0.000 | |
NDVI | −0.21–0.21 | 4 | 67,502 | 0.272 | −0.007 | 0.279 |
0.21–0.36 | 10 | 207,991 | 0.063 | −0.005 | 0.068 | |
0.36–0.44 | 63 | 651,020 | 0.762 | −0.358 | 1.121 | |
0.44– 0.52 | 56 | 1,089,392 | 0.130 | −0.077 | 0.207 | |
0.52–0.65 | 8 | 1,107,281 | −1.832 | 0.379 | −2.212 | |
Lithology | 1 | 27 | 363,139 | 0.499 | −0.089 | 0.588 |
2 | 0 | 1694 | 0.000 | 0.001 | 0.000 | |
3 | 2 | 136,901 | −1.128 | 0.031 | −1.159 | |
4 | 6 | 398,403 | −1.098 | 0.093 | −1.191 | |
5 | 0 | 7470 | 0.000 | 0.002 | 0.000 | |
6 | 0 | 107,848 | 0.000 | 0.035 | 0.000 | |
7 | 5 | 225,834 | −0.713 | 0.039 | −0.751 | |
8 | 10 | 319,450 | −0.366 | 0.034 | −0.401 | |
9 | 9 | 276,290 | −0.326 | 0.027 | −0.353 | |
10 | 1 | 39,158 | −0.570 | 0.005 | −0.575 | |
11 | 32 | 435,539 | 0.487 | −0.107 | 0.594 | |
12 | 49 | 811,460 | 0.291 | −0.126 | 0.417 | |
Rainfall (mm/yr) | <900 | 8 | 189,533 | −0.067 | 0.004 | −0.071 |
900–1000 | 29 | 582,217 | 0.098 | −0.024 | 0.122 | |
1000–1100 | 23 | 282,006 | 0.591 | −0.083 | 0.675 | |
1100–1200 | 35 | 329,319 | 0.856 | −0.174 | 1.030 | |
1200–1300 | 16 | 271,086 | 0.268 | −0.030 | 0.298 | |
1300–1400 | 18 | 629,601 | −0.457 | 0.089 | −0.545 | |
1400–1500 | 7 | 351,254 | −0.818 | 0.068 | −0.886 | |
1500–1600 | 3 | 270,784 | −1.405 | 0.069 | −1.474 | |
1600–1700 | 1 | 135,625 | −1.812 | 0.037 | −1.849 | |
>1700 | 1 | 81,761 | −1.306 | 0.019 | −1.325 |
Landslide Conditioning Factors | Collinearity Statistics | |
---|---|---|
Tolerance (TOL) | Variance inflation factors (VIF) | |
Slope angle | 0.761 | 1.315 |
Slope aspect | 0.883 | 1.133 |
Elevation | 0.650 | 1.539 |
Plan curvature | 0.714 | 1.400 |
Profile curvature | 0.855 | 1.170 |
TWI | 0.828 | 1.208 |
SPI | 0.434 | 2.303 |
STI | 0.402 | 2.489 |
Distance to rivers | 0.946 | 1.057 |
Distance to roads | 0.779 | 1.284 |
Distance to faults | 0.908 | 1.101 |
NDVI | 0.774 | 1.292 |
Soil | 0.642 | 1.557 |
Land use | 0.627 | 1.595 |
Lithology | 0.765 | 1.308 |
Rainfall | 0.664 | 1.507 |
−2 Log Likelihood | Cox & Snell R Square | Nagelkerke R Square |
---|---|---|
311.780 | 0.245 | 0.326 |
Landslide Conditioning Factors | Coefficients |
---|---|
Slope angle | 1.122 |
Slope aspect | 2.157 |
Elevation | 0.986 |
Plan curvature | 2.505 |
Profile curvature | 0.868 |
TWI | 1.764 |
SPI | 1.427 |
STI | 1.142 |
Distance to rivers | 0.512 |
Distance to roads | 1.445 |
Distance to faults | 0.972 |
NDVI | 0.859 |
Soil | 1.392 |
Land use | 1.634 |
Lithology | 1.032 |
Rainfall | 1.594 |
Constant | 0.806 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Sun, Z.; Han, J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Appl. Sci. 2019, 9, 171. https://doi.org/10.3390/app9010171
Chen W, Sun Z, Han J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied Sciences. 2019; 9(1):171. https://doi.org/10.3390/app9010171
Chicago/Turabian StyleChen, Wei, Zenghui Sun, and Jichang Han. 2019. "Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models" Applied Sciences 9, no. 1: 171. https://doi.org/10.3390/app9010171
APA StyleChen, W., Sun, Z., & Han, J. (2019). Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied Sciences, 9(1), 171. https://doi.org/10.3390/app9010171