Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic Optimization Commutation for Magnetic Levitation Planar Motors
Abstract
:1. Introduction
2. Commutation and Power Loss Equalizing Degree of Coil Array
2.1. Commutation of Coil Array
2.2. Power Loss Equalizing Degree and the Approach to Raise It
2.3. Raising Power Loss Equalizing Degree by Convex Quadratic Optimisation Commutation
3. Implementation of Raising Power Loss Equalizing Degree (PLED) by Convex Optimization Commutation
3.1. Algorithms of Convex Quadratic Optimization Commutation
3.2. Implementation of Raising PLED by Convex Quadratic Optimization Commutation
4. Experimental Verification of Convex Quadratic Optimization Commutation
4.1. Configuration of Comprehensive Measurement Platform (System)
4.2. Verification Schem and Measurement Results
5. Further Discussion about Raising PLED by Convex Quadratic Optimization Commutation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, W.J. Nanoscale Dynamics, Stochastic Modelling, and Multi-Scale Control of a Planar Magnetic Levitator. Int. J. Control Autom. 2003, 3, 1–10. [Google Scholar]
- Compeer, J.C. Electro-Dynamic Planar Motor. Precis. Eng. 2004, 28, 171–180. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, B.; Zhang, H.; Jin, Y. A Three-Degree-of-Freedom Short-Stroke Lorentz-Force-Driven Planar Motor Using a Halbach Permanent-Magnet Array with Unequal Thickness. IEEE Trans. Ind. Electron. 2015, 62, 3640–3650. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Galea, M.; Li, J.; Gerada, C. Multiobjective Optimization of a Magnetically Levitated Planar Motor with Multilayer Windings. IEEE Trans. Ind. Electron. 2016, 63, 3522–3532. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, B. Design and Optimization of a Lorentz-Force-Driven Planar Motor. Appl. Sci. 2017, 7, 7. [Google Scholar] [CrossRef]
- Zhu, Y.; Yuan, D.; Zhang, M.; Liu, F.; Hu, C. A Unified Wrench Model of an Ironless Permanent Magnet Planar Motor with 2D Periodic Magnetic Field. IET Electr. Power Appl. 2017, 12, 423–430. [Google Scholar] [CrossRef]
- Jansen, J.W.; Lierop, C.M.M.; Lomonova, E.A.; Vandenput, A.J.A. Modeling of Magnetically Levitated Planar Actuators with Moving Magnets. IEEE Trans. Magn. 2007, 43, 15–25. [Google Scholar] [CrossRef]
- Boeij, J.; Lomonova, E.A.; Duarte, J.L. Contactless Planar Actuator with Manipulator: A Motion System without Cables and Physical Contact between the Mover and the Fixed World. IEEE Trans. Ind. Appl. 2009, 45, 1930–1938. [Google Scholar] [CrossRef]
- Kou, B.; Xing, F.; Zhang, L.; Zhang, C.; Zhou, Y. A Real-Time Computation Model of the Electromagnetic Force and Torque for a Maglev Planar Motor with the Concentric Winding. Appl. Sci. 2017, 7, 98. [Google Scholar] [CrossRef]
- Lierop, C.M.M.; Jansen, J.W.; Damen, A.A.H.; Lomonova, E.A.; Bosch, P.P.J.; Vandenput, A.J.A. Model-Based Commutation of a Long-Stroke Magnetically Levitated Linear Actuator. IEEE Trans. Ind. Appl. 2009, 45, 1982–1990. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, S.; Mu, H.; Yang, K.; Yin, W. Augmentation of Propulsion Based on Coil Array Commutation for Magnetically Levitated Sage. IEEE Trans. Magn. 2012, 48, 31–37. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Y.; Mu, H.; Yang, K.; Yin, W. Decoupling and Levitation Control of a Six-Degree-of-Freedom Magnetically Levitated Stage with Moving Coils Based on Commutation of Coil Array. Proc. Inst. Mech. Eng. 2012, 226, 875–886. [Google Scholar] [CrossRef]
- Xing, F.; Kou, B.; Zhang, L.; Yin, X.; Zhou, Y. Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation. Energies 2017, 10, 1132. [Google Scholar] [CrossRef]
- Jansen, J.W. Magnetically Levitated Planar Actuator with Moving Magnets: Electromechanical Analysis and Design. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2007. [Google Scholar]
- Rovers, J.M.M.; Stöck, M.; Jansen, J.W.; Lierop, C.M.M.; Lomonova, E.A.; Perriard, Y. Real-Time 3D Thermal Modeling of a Magnetically Levitated Planar Actuator. Mechatronics 2013, 23, 240–246. [Google Scholar] [CrossRef]
- Rovers, J.M.M.; Jansen, J.W.; Compter, J.C.; Lomonova, E.A. Analysis Method of the Dynamic Force and Torque Distribution in the Magnet Array of a Commutated Magnetically Levitated Planar Actuator. IEEE Trans. Ind. Electron. 2012, 59, 2157–2166. [Google Scholar] [CrossRef]
- Rovers, J.M.M.; Jansen, J.W.; Lomonova, E.A. Multiphysical Analysis of Moving-Magnet Planar Motor Topologies. IEEE Trans. Magn. 2013, 49, 5730–5741. [Google Scholar] [CrossRef]
- Gajdusek, M.; Damen, A.A.H.; Bosch, P.P.J. l∞-Norm and Clipped l2-Norm Based Commutation for Ironless over-Actuated Electromagnetic Actuators. In Proceedings of the XIX International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Zhang, S.; Zhu, Y.; Yin, W.; Yang, K.; Zhang, M. Coil Array Real-Time Commutation Law for a Magnetically Levitated Stage with Moving Coils. J. Mech. Eng. 2011, 47, 180–185. [Google Scholar] [CrossRef]
- Zhang, S.; Dang, X.; Wang, K.; Huang, J.; Yang, J.; Zhang, G. An Analytical Approach to Determine Coil Thickness for Magnetically Levitated Planar Motors. IEEE-ASME Trans. Mechatron. 2017, 22, 572–580. [Google Scholar] [CrossRef]
- Stephen, B.; Lieven, V. Convex Optimization, 1st ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 21–23, 69–71. ISBN 978-0-521-83378-3. [Google Scholar]
- The MathWorks, Inc. Optimization ToolboxTM User’s Guide 2012b; The MathWorks, Inc.: Natick, MA, USA, 2012. [Google Scholar]
- Yuan, G.; Wei, Z.; Zhang, M. An Active-Set Projected Trust Region Algorithm for Box Constrained Optimization Problems. J. Syst. Sci. Complex. 2015, 28, 1128–1147. [Google Scholar] [CrossRef]
- Frank, E.C.; Zheng, H.; Daniel, P.R. A Globally Convergent Primal-Dual Active-Set Framework for Large-Scale Convex Quadratic Optimization. Comput. Optim. Appl. 2015, 60, 311–341. [Google Scholar]
- Bemporad, A. A Quadratic Programming Algorithm Based on Nonnegative Least Squares with Applications to Embedded Model Predictive Control. IEEE Trans. Autom. Control 2016, 61, 1111–1116. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Y.X. A Trust Region Method Based on a New Affine Scaling Technique for Simple Bound Optimization. Optim. Method Softw. 2013, 28, 871–888. [Google Scholar] [CrossRef]
Parts | Parameters | Symbol | Unit | Value |
---|---|---|---|---|
Permanent magnet array stage | Permanent magnet surface residual magnetism | M0 | Tesla | 1.23 |
Permanent magnet array manufacture pole pitch | τ | mm | 15.0 | |
Permanent magnet array motion pole pitch | τn | mm | 10.6 | |
Permanent magnet array length | Lm | mm | 200.0 | |
Permanent magnet length | bm1 | mm | 10.0 | |
Permanent magnet width | bm2 | mm | 5.0 | |
Permanent magnet thickness | hm | mm | 10.0 | |
Coil array stage | Coil array stage mass | M | kg | 1.02 |
Number of coils | N | 4 × 5 | ||
Number of coil turns | N | 52 ± 1 | ||
Coil array length | Lc | mm | 144.0 ± 2.0 | |
Coil length | lc | mm | 63.6 ± 1.0 | |
Coil width | wc | mm | 8.4 ± 0.2 | |
Coil turn width | bc | mm | 6.0 ± 0.2 | |
Coil thickness | hc | mm | 5.3 ± 0.2 | |
Coil resistance (Room temperature) | R | Ω | 0.6 ± 0.05 | |
Coil inductance (AC 1kHz) | L | mH | 0.1 ± 0.01 | |
Coil specified current (an hour, <90 °C) | Is | A | 3.15 | |
Coil specified voltage (DC) | Us | V | ±24 | |
Coil specified power | Ps | Watt | 75.6 |
Position x (mm) | −10.608 | −9.282 | −7.956 | −6.630 | −5.304 | −3.978 | −2.652 | −1.326 | 0.000 | 1.326 | 2.652 | 3.978 | 5.304 | 6.630 | 7.956 | 9.282 | 10.608 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coil 01 | 0.346 | −0.351 | −1.335 | −2.000 | −1.931 | −1.825 | −1.684 | −1.019 | −0.203 | 0.515 | 1.568 | 2.000 | 2.000 | 1.865 | 1.602 | 1.035 | 0.346 |
Coil 02 | −2.000 | −1.877 | −1.176 | 0.154 | 0.975 | 1.708 | 2.000 | 2.000 | 2.000 | 1.864 | 1.292 | −0.046 | −0.894 | −1.475 | −2.000 | −2.000 | −2.000 |
Coil 03 | 2.000 | 2.000 | 2.000 | 2.000 | 1.090 | 0.102 | −1.123 | −1.944 | −2.000 | −2.000 | −2.000 | −2.000 | −0.845 | 0.189 | 1.184 | 1.925 | 2.000 |
Coil 04 | −0.597 | −1.549 | −2.000 | −2.000 | −1.952 | −1.541 | −1.250 | −0.329 | 0.711 | 1.649 | 2.000 | 2.000 | 2.000 | 1.609 | 1.169 | 0.370 | −0.597 |
Coil 05 | −1.822 | −0.863 | 0.330 | 1.592 | 1.818 | 2.000 | 2.000 | 2.000 | 1.802 | 0.903 | −0.076 | −1.328 | −1.664 | −1.893 | −2.000 | −2.000 | −1.822 |
Coil 06 | −1.334 | −1.480 | −1.171 | −0.549 | −0.484 | −0.527 | −0.548 | −0.942 | −1.256 | −1.393 | −1.275 | −0.729 | −0.728 | −0.759 | −0.720 | −1.010 | −1.334 |
Coil 07 | 0.438 | 0.235 | 0.223 | 0.465 | 0.592 | 0.708 | 0.774 | 0.692 | 0.542 | 0.367 | 0.388 | 0.433 | 0.510 | 0.580 | 0.676 | 0.585 | 0.438 |
Coil 08 | 1.121 | 1.649 | 1.898 | 1.482 | 0.899 | 0.703 | 0.630 | 0.915 | 1.273 | 1.709 | 1.709 | 1.332 | 0.746 | 0.563 | 0.493 | 0.716 | 1.121 |
Coil 09 | −2.000 | −2.000 | −2.000 | −2.000 | −2.000 | −1.901 | −1.920 | −1.870 | −1.974 | −2.000 | −2.000 | −2.000 | −2.000 | −1.876 | −1.965 | −1.993 | −2.000 |
Coil 10 | 0.907 | 0.855 | 1.255 | 1.762 | 1.436 | 1.411 | 1.476 | 1.177 | 0.928 | 0.913 | 1.195 | 1.588 | 1.214 | 1.155 | 1.315 | 1.097 | 0.907 |
Coil 11 | −1.267 | −1.916 | −2.000 | −2.000 | −2.000 | −1.397 | −0.369 | 0.493 | 1.120 | 1.837 | 2.000 | 2.000 | 2.000 | 1.492 | 0.451 | −0.517 | −1.267 |
Coil 12 | 2.000 | 2.000 | 1.544 | 0.404 | −0.940 | −1.934 | −2.000 | −2.000 | −2.000 | −1.813 | −1.386 | −0.382 | 0.848 | 1.838 | 2.000 | 2.000 | 2.000 |
Coil 13 | −1.113 | 0.621 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 1.146 | −0.421 | −1.909 | −2.000 | −2.000 | −2.000 | −2.000 | −2.000 | −1.113 |
Coil 14 | −2.000 | −2.000 | −2.000 | −2.000 | −2.000 | −1.173 | −0.058 | 1.064 | 1.932 | 2.000 | 2.000 | 2.000 | 2.000 | 1.293 | 0.124 | −1.072 | −2.000 |
Coil 15 | 2.000 | 2.000 | 1.223 | −0.331 | −1.670 | −2.000 | −2.000 | −2.000 | −2.000 | −1.988 | −1.088 | 0.252 | 1.506 | 2.000 | 2.000 | 2.000 | 2.000 |
Coil 16 | 0.112 | 0.460 | 1.137 | 1.536 | 0.908 | 0.582 | 0.315 | 0.154 | 0.148 | 0.563 | 1.067 | 1.396 | 0.750 | 0.378 | 0.258 | 0.120 | 0.112 |
Coil 17 | −0.004 | −0.418 | −0.617 | −0.333 | 0.052 | 0.286 | 0.462 | 0.325 | 0.114 | −0.175 | −0.209 | −0.079 | 0.164 | 0.308 | 0.428 | 0.273 | −0.004 |
Coil 18 | 0.122 | 0.189 | 0.034 | −0.282 | −0.301 | −0.238 | −0.068 | 0.089 | 0.303 | 0.473 | 0.339 | 0.154 | −0.060 | −0.069 | −0.080 | 0.000 | 0.122 |
Coil 19 | −0.766 | −0.711 | −0.857 | −1.008 | −0.742 | −0.786 | −1.053 | −0.769 | −0.564 | −0.461 | −0.480 | −0.867 | −0.619 | −0.735 | −0.982 | −0.858 | −0.766 |
Coil 20 | 0.435 | 0.161 | 0.363 | 0.917 | 0.865 | 0.963 | 1.145 | 0.787 | 0.471 | 0.332 | 0.552 | 1.036 | 0.840 | 0.861 | 1.047 | 0.762 | 0.435 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Huang, J.; Yang, J. Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic Optimization Commutation for Magnetic Levitation Planar Motors. Appl. Sci. 2019, 9, 79. https://doi.org/10.3390/app9010079
Zhang S, Huang J, Yang J. Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic Optimization Commutation for Magnetic Levitation Planar Motors. Applied Sciences. 2019; 9(1):79. https://doi.org/10.3390/app9010079
Chicago/Turabian StyleZhang, Shengguo, Jingtao Huang, and Jingxian Yang. 2019. "Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic Optimization Commutation for Magnetic Levitation Planar Motors" Applied Sciences 9, no. 1: 79. https://doi.org/10.3390/app9010079
APA StyleZhang, S., Huang, J., & Yang, J. (2019). Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic Optimization Commutation for Magnetic Levitation Planar Motors. Applied Sciences, 9(1), 79. https://doi.org/10.3390/app9010079