Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks
Abstract
:1. Introduction
2. Network Piping System; Flow Distribution Calculation
2.1. Topology of the Network
2.2. A Hydraulic Model
3. The Hardy Cross Method; Different Versions
3.1. The Hardy Cross Method; Original Approach
3.2. A Version of the Hardy Cross Method from Russian Practice
3.3. The Modified Hardy Cross Method
3.4. The Multi-Point Iterative Hardy Cross Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
relative gas density (-); here | |
density of air (kg/m3); here = 1.2 kg/m3 | |
length of pipe (m) | |
diameter of pipe (m) | |
flow (m3/s) | |
flow correction (m3/s) | |
pressure (Pa) | |
pressure correction (Pa) | |
function of pressure | |
first derivative of function of pressure | |
Darcy (Moody) flow friction factor (dimensionless) | |
Reynolds number (dimensionless) | |
relative roughness of inner pipe surface (dimensionless) | |
flow discharge coefficient (dimensionless) | |
area of ventilation opening (m2) | |
Ludolph number; 3.1415 | |
counter |
Appendix A. Hydraulic Models for Water Pipe Networks and for Ventilation Systems
Appendix B. The Life and Work of Hardy Cross
References
- Cross, H. Analysis of flow in networks of conduits or conductors. Eng. Exp. Stn. 1936, 34, 3–29. Available online: http://hdl.handle.net/2142/4433 (accessed on 28 March 2019).
- Katzenelson, J. An algorithm for solving nonlinear resistor networks. Bell Syst. Tech. J. 1965, 44, 1605–1620. [Google Scholar] [CrossRef]
- Gay, B.; Middleton, P. The solution of pipe network problems. Chem. Eng. Sci. 1971, 26, 109–123. [Google Scholar] [CrossRef]
- Brkić, D. Iterative methods for looped network pipeline calculation. Water. Resour. Manag. 2011, 25, 2951–2987. [Google Scholar] [CrossRef]
- Brkić, D. A gas distribution network hydraulic problem from practice. Petrol. Sci. Technol. 2011, 29, 366–377. [Google Scholar] [CrossRef]
- Brkić, D. Spreadsheet-based pipe networks analysis for teaching and learning purpose. Spreadsheets Educ. (EJSIE) 2016, 9, 4646. Available online: https://sie.scholasticahq.com/article/4646.pdf (accessed on 28 March 2019).
- Brkić, D.; Tanasković, T.I. Systematic approach to natural gas usage for domestic heating in urban areas. Energy 2008, 33, 1738–1753. [Google Scholar] [CrossRef] [Green Version]
- Augusto, G.L.; Culaba, A.B.; Tanhueco, R.M. Pipe sizing of district cooling distribution network using implicit Colebrook-White Equation. J. Adv. Comput. Intell. 2016, 20, 76–83. [Google Scholar] [CrossRef]
- Aynsley, R.M. A resistance approach to analysis of natural ventilation airflow networks. J. Wind Eng. Ind. Aerodyn. 1997, 67, 711–719. [Google Scholar] [CrossRef]
- Kassai, M.; Poleczky, L.; Al-Hyari, L.; Kajtar, L.; Nyers, J. Investigation of the energy recovery potentials in ventilation systems in different climates. Facta Univ. Ser. Mech. Eng. 2018, 16, 203–217. [Google Scholar] [CrossRef]
- Лoбачев, В.Г. Нoвый метoд увязки кoлец при расчете вoдoпрoвoдных сетей. Санитарная техника 1934, 2, 8–12. (In Russian) [Google Scholar]
- Андрияшев, М.М. Техника расчета вoдoпрoвoднoй сети. Мoсква, Огиз: Сoветскoе закoнoдательствo. 1932. (In Russian) [Google Scholar]
- Niazkar, M.; Afzali, S.H. Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods. Comput. Appl. Eng. Educ. 2017, 25, 277–289. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Analysis of water distribution networks using MATLAB and Excel spreadsheet: H-based methods. Comput. Appl. Eng. Educ. 2017, 25, 129–141. [Google Scholar] [CrossRef]
- Epp, R.; Fowler, A.G. Efficient code for steady flows in networks. J. Hydraul. Div. ASCE 1970, 96, 43–56. [Google Scholar]
- Praks, P.; Brkić, D. Choosing the optimal multi-point iterative method for the Colebrook flow friction equation. Processes 2018, 6, 130. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction. Adv. Civ. Eng. 2018, 2018, 5451034. [Google Scholar] [CrossRef]
- Brkić, D. An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks. Appl. Energy 2009, 86, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Coelho, P.M.; Pinho, C. Considerations about equations for steady state flow in natural gas pipelines. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Bagajewicz, M.; Valtinson, G. Computation of natural gas pipeline hydraulics. Ind. Eng. Chem. Res. 2014, 53, 10707–10720. [Google Scholar] [CrossRef]
- Pambour, K.A.; Cakir Erdener, B.; Bolado-Lavin, R.; Dijkema, G.P.J. Development of a simulation framework for analyzing security of supply in integrated gas and electric power systems. Appl. Sci. 2017, 7, 47. [Google Scholar] [CrossRef]
- Praks, P.; Kopustinskas, V.; Masera, M. Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure. Reliab. Eng. Syst. Saf. 2015, 144, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Colebrook, C.F. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. Unified friction formulation from laminar to fully rough turbulent flow. Appl. Sci. 2018, 8, 2036. [Google Scholar] [CrossRef]
- Corfield, G.; Hunt, B.E.; Ott, R.J.; Binder, G.P.; Vandaveer, F.E. Distribution design for increased demand. In Gas Engineers Handbook; Segeler, C.G., Ed.; Industrial Press: New York, NY, USA, 1974; Chapter 9; pp. 63–83. [Google Scholar]
- Brkić, D. Discussion of “Economics and statistical evaluations of using Microsoft Excel Solver in pipe network analysis” by Oke, I.A.; Ismail, A.; Lukman, S.; Ojo, S.O.; Adeosun, O.O.; Nwude, M.O. J. Pipeline Syst. Eng. 2018, 9, 07018002. [Google Scholar] [CrossRef]
- Džunić, J.; Petković, M.S.; Petković, L.D. A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Appl. Math. Comput. 2011, 217, 7612–7619. [Google Scholar] [CrossRef]
- Khdhr, F.W.; Saeed, R.K.; Soleymani, F. Improving the Computational Efficiency of a Variant of Steffensen’s Method for Nonlinear Equations. Mathematics 2019, 7, 306. [Google Scholar] [CrossRef]
- Behl, R.; Salimi, M.; Ferrara, M.; Sharifi, S.; Alharbi, S.K. Some Real-Life Applications of a Newly Constructed Derivative Free Iterative Scheme. Symmetry 2019, 11, 239. [Google Scholar] [CrossRef]
- Hamam, Y.M.; Brameller, A. Hybrid method for the solution of piping networks. Proc. Inst. Electr. Eng. 1971, 118, 1607–1612. [Google Scholar] [CrossRef]
- Wood, D.J.; Charles, C.O.A. Hydraulic network analysis using linear theory. J. Hydraul. Div. ASCE 1972, 98, 1157–1170. [Google Scholar]
- Wood, D.J.; Rayes, A.G. Reliability of algorithms for pipe network analysis. J. Hydraul. Div. ASCE 1981, 107, 1145–1161. [Google Scholar]
- Brkić, D.; Praks, P. An efficient iterative method for looped pipe network hydraulics free of flow-corrections. Fluids 2019, 4, 73. [Google Scholar] [CrossRef]
- Shamir, U.; Howard, C.D.D. Water distribution systems analysis. J. Hydraul. Div. ASCE 1968, 94, 219–234. [Google Scholar]
- Lopes, A.M.G. Implementation of the Hardy-Cross method for the solution of piping networks. Comput. Appl. Eng. Educ. 2004, 12, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Elaoud, S.; Hafsi, Z.; Hadj-Taieb, L. Numerical modelling of hydrogen-natural gas mixtures flows in looped networks. J. Pet. Sci. Eng. 2017, 159, 532–541. [Google Scholar] [CrossRef]
- Bermúdez, J.-R.; López-Estrada, F.-R.; Besançon, G.; Valencia-Palomo, G.; Torres, L.; Hernández, H.-R. Modeling and simulation of a hydraulic network for leak diagnosis. Math. Comput. Appl. 2018, 23, 70. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Leakage detection and estimation algorithm for loss reduction in water piping networks. Water 2017, 9, 773. [Google Scholar] [CrossRef]
- Todini, E.; Rossman, L.A. Unified framework for deriving simultaneous equation algorithms for water distribution networks. J. Hydraul. Eng. 2012, 139, 511–526. [Google Scholar] [CrossRef]
- Ghazanfari, S.A.; Wahid, M.A. Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with delta winglet-type vortex generators. Facta Univ. Ser. Mech. Eng. 2018, 16, 233–247. [Google Scholar] [CrossRef]
- Brkić, D. Review of explicit approximations to the Colebrook relation for flow friction. J. Pet. Sci. Eng. 2011, 77, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Brkić, D. Lambert W function in hydraulic problems. Math. Balk. 2012, 26, 285–292. Available online: http://www.math.bas.bg/infres/MathBalk/MB-26/MB-26-285-292.pdf (accessed on 29 March 2019).
- Brkić, D.; Ćojbašić, Ž. Evolutionary optimization of Colebrook’s turbulent flow friction approximations. Fluids 2017, 2, 15. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. One-log call iterative solution of the Colebrook equation for flow friction based on Padé polynomials. Energies 2018, 11, 1825. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function. Mathematics 2019, 7, 34. [Google Scholar] [CrossRef]
- Brkić, D. Solution of the implicit Colebrook equation for flow friction using Excel. Spreadsheets Educ. 2017, 10, 4663. Available online: https://sie.scholasticahq.com/article/4663.pdf (accessed on 29 March 2019).
- Olivares Gallardo, A.P.; Guerra Rojas, R.A.; Alfaro Guerra, M.A. Evaluación experimental de la solución analítica exacta de la ecuación de Colebrook-White. Ing. Investig. Y Tecnol. 2019, 20, 1–11. (In Spanish) [Google Scholar] [CrossRef]
- Eaton, L.K. Hardy Cross: American Engineer; University of Illinois Press: Champaign, IL, USA, 2006. [Google Scholar]
- Eaton, L.K. Hardy Cross and the “Moment Distribution Method”. Nexus Netw. J. 2001, 3, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Weingardt, R.G. Hardy Cross, A man ahead of his time. Struct. Mag. 2005, 3, 40–41. [Google Scholar]
- Weingardt, R.G. Hardy Cross and Albert A. Dorman. Leadersh. Manag. Eng. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Cross, H. Engineers and Ivory Towers; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Volokh, K.Y. On foundations of the Hardy Cross method. Int. J. Solids Struct. 2002, 39, 4197–4200. [Google Scholar] [CrossRef]
- Baugh, J.; Liu, S. A general characterization of the Hardy Cross method as sequential and multiprocess algorithms. Structures 2016, 6, 170–181. [Google Scholar] [CrossRef]
- Zweig, C.M. Hardy Cross, The Tinkerer. Civ. + Struct. Eng. Mag. 2014. Available online: https://csengineermag.com/article/hardy-cross-the-tinkerer/ (accessed on 10 April 2019).
- Cross, H. Analysis of continuous frames by distributing fixed-end moments. Am. Soc. Civ. Eng. Trans. 1932, 96, 1793. [Google Scholar]
- Fresl, K.; Gidak, P.; Hak, S. Iz povijesti razvoja iteracijskih postupaka (From the history of development of iterative procedures). Građevinar 2010, 62, 959–970. Available online: https://hrcak.srce.hr/61473 (accessed on 10 April 2019). (In Serbian).
- Čališev, K. Izračunavanje višestruko statički neodređenih sistema pomoću postepenih aproksimacija. Teh. List Udruženja Jugosl. Inženjera Arhit. 1923, 5, 17–21. (In Serbian) [Google Scholar]
- Timošenko, S. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures; McGraw-Hill: New York, NY, USA, 1953; ISSN 0486611876. [Google Scholar]
- Samuelsson, A.; Zienkiewicz, O.C. History of the stiffness method. Int. J. Numer. Methods Eng. 2006, 67, 149–157. [Google Scholar] [CrossRef]
Iteration 1 | |||||||
---|---|---|---|---|---|---|---|
Loop | Pipe | a | b | c | d | e | f |
I | 1 | −0.3342 | −144518566.8 | 787025109.2 | −0.0994 | −0.4336 | |
7 | +0.7028 | +859927106.7 | 2226902866.0 | −0.0994 | +0.6034 | ||
8 | +0.3056 | +306964191.0 | 1828124435.8 | −0.0994 | −0.0532 = | +0.1530 | |
9 | +0.2778 | +800657172.4 | 5245486154.8 | −0.0994 | −0.0338 = | +0.1446 | |
10 | −0.1364 | −241342976.1 | 3220265516.7 | −0.0994 | +0.0142 ‡ | −0.2217 | |
12 | −0.0167 | −6238747.4 | 679911398.4 | −0.0994 | +0.0651 ‡ | −0.0511 | |
= +1575448179.8 | 13987715480.9 | ||||||
II | 2 | −0.0026 | −80628.9 | 56440212.4 | −0.0651 | −0.0677 | |
11 | −0.1198 | −14582531.0 | 221537615.9 | −0.0651 | +0.0142 ‡ | −0.1707 | |
12 | +0.0167 | +6238747.4 | 679911398.4 | −0.0651 | +0.0994 | +0.0511 | |
= −8424412.4 | 957889226.7 | ||||||
III | 3 | −0.2338 | −406110098.1 | 3161336093.1 | −0.0142 | −0.2480 | |
4 | +0.0182 | +1530938.1 | 153093808.5 | −0.0142 | +0.0040 | ||
10 | +0.1364 | +241342976.1 | 3220265516.7 | −0.0142 | +0.0994 | +0.2217 | |
11 | +0.1198 | +14582531.0 | 221537615.9 | −0.0142 | +0.0651 | +0.1707 | |
14 | −0.0278 | −21840183.8 | 1429824980.5 | −0.0142 | −0.0338 | −0.0757 | |
= −170493836.7 | 8186058014.8 | ||||||
IV | 5 | +0.0460 | +7523646.2 | 297674697.0 | +0.0338 | +0.0798 | |
9 | −0.2778 | −800657172.4 | 5245486154.8 | +0.0338 | +0.0994 ‡ | −0.1446 | |
13 | +0.0278 | +21840183.8 | 1429824980.5 | +0.0338 | −0.0532 = | +0.0084 | |
14 | +0.0278 | +21840183.8 | 1429824980.5 | +0.0338 | +0.0142 | +0.0757 | |
= −749453158.7 | 8402810812.8 | ||||||
V | 6 | +0.0182 | +3479197.2 | 347919720.0 | +0.0532 | +0.0714 | |
8 | −0.3056 | −306964191.0 | 1828124435.8 | +0.0532 | +0.0994 ‡ | −0.1530 | |
13 | −0.0278 | −21840183.8 | 1429824980.5 | +0.0532 | −0.0338 | −0.0084 | |
= −325325177.5 | 3605869136.3 | ||||||
Iteration 2 | |||||||
Loop | Pipe | ||||||
I | 1 | −0.4336 | −232172997.6 | 974431560.7 | −0.0058 | −0.4394 | |
7 | +0.6034 | +651439280.6 | 1965036192.1 | −0.0058 | +0.5976 | ||
8 | +0.1530 | +87112249.4 | 1036457217.8 | −0.0058 | −0.0178 = | +0.1294 | |
9 | +0.1446 | +243990034.4 | 3070921097.1 | −0.0058 | −0.0098 = | +0.1290 | |
10 | −0.2217 | −584137977.5 | 4795666298.0 | −0.0058 | +0.0018 ‡ | −0.2257 | |
12 | −0.0511 | −47725420.6 | 1700518680.1 | −0.0058 | −2.1·10−5 | −0.0569 | |
= +118505168.7 | 13543031045.9 | ||||||
II | 2 | −0.0677 | −30372941.9 | 816962908.0 | +2.1·10−5 | −0.0676 | |
11 | −0.1707 | −27780459.9 | 296182372.8 | +2.1·10−5 | +0.0018 ‡ | −0.1689 | |
12 | +0.0511 | +47725420.6 | 1700518680.1 | +2.1·10−5 | +0.0058 | +0.0569 | |
= −10427981.2 | 2813663960.8 | ||||||
III | 3 | −0.2480 | −451970989.4 | 3317464222.8 | −0.0018 | −0.2497 | |
4 | +0.0040 | +99061.2 | 44589235.4 | −0.0018 | +0.0023 | ||
10 | +0.2217 | +584137977.5 | 4795666298.0 | −0.0018 | +0.0058 | +0.2257 | |
11 | +0.1707 | +27780459.9 | 296182372.8 | −0.0018 | −2.1·10−5 = | +0.1689 | |
14 | −0.0757 | −135261698.0 | 3251481942.9 | −0.0018 | −0.0098 | −0.0873 | |
= +24784811.3 | 11705384072.0 | ||||||
IV | 5 | +0.0798 | +20483898.1 | 467437803.0 | +0.0098 | +0.0896 | |
9 | −0.1446 | −243990034.4 | 3070921097.1 | +0.0098 | +0.0058 ‡ | −0.1290 | |
13 | +0.0084 | +2454799.0 | 534076127.2 | +0.0098 | −0.0178 = | +0.0004 | |
14 | +0.0757 | +135261698.0 | 3251481942.9 | +0.0098 | +0.0018 | +0.0873 | |
= −85789639.2 | 7323916970.2 | ||||||
V | 6 | +0.0714 | +41857166.9 | 1067095933.1 | +0.0178 | +0.0892 | |
8 | −0.1530 | −87112249.4 | 1036457217.8 | +0.0178 | +0.0058 ‡ | −0.1294 | |
13 | −0.0084 | −2454799.0 | 534076127.2 | +0.0178 | −0.0098 | −0.0004 | |
= −47709881.5 | 2637629278.1 |
a Pipe Number | Diameter (m) | Length (m) | b Assumed Flows (m3/h) | c Calculated Flows (m3/h) | Gas Velocity (m/s) |
---|---|---|---|---|---|
1 | 0.305 | 1127.8 | 1203.2 | 1583.6 | 1.5 |
2 | 0.203 | 609.6 | 9.2 | 245.2 | 0.5 |
3 | 0.203 | 853.4 | 841.6 | 899.7 | 1.9 |
4 | 0.203 | 335.3 | 65.6 | 7.5 | 0.01 |
5 | 0.203 | 304.8 | 165.6 | 320.2 | 0.7 |
6 | 0.203 | 762.0 | 65.6 | 322.7 | 0.7 |
7 | 0.203 | 243.8 | 2530.0 | 2149.6 | 4.6 |
8 | 0.203 | 396.2 | 1100.0 | 462.4 | 1.0 |
9 | 0.152 | 304.8 | 1000.0 | 465.0 | 1.8 |
10 | 0.152 | 335.3 | 491.2 | 813.5 | 3.1 |
11 | 0.254 | 304.8 | 431.2 | 609.1 | 0.8 |
12 | 0.152 | 396.2 | 60.0 | 204.8 | 0.8 |
13 | 0.152 | 548.6 | 100.0 | d−2.6 | −0.009 |
14 | 0.152 | 548.6 | 100.0 | 312.7 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brkić, D.; Praks, P. Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks. Appl. Sci. 2019, 9, 2019. https://doi.org/10.3390/app9102019
Brkić D, Praks P. Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks. Applied Sciences. 2019; 9(10):2019. https://doi.org/10.3390/app9102019
Chicago/Turabian StyleBrkić, Dejan, and Pavel Praks. 2019. "Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks" Applied Sciences 9, no. 10: 2019. https://doi.org/10.3390/app9102019
APA StyleBrkić, D., & Praks, P. (2019). Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks. Applied Sciences, 9(10), 2019. https://doi.org/10.3390/app9102019