A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation
Abstract
:1. Introduction
2. The Classical Orbital Angular Momentum (OAM) Mode
3. Three Kinds of Tunable OAM Modes
3.1. The OAM Varies from −l to l with Homogeneous State of Polarization (SOP) along the Longitude of Orbital Poincaré Sphere (PS)
3.2. The OAM Varies from −l to l with Inhomogeneous SOP Along the Longitude of Higher-Order PS
3.3. The OAM Varies from l to n with Inhomogeneous SOP Along the Longitude of Hybrid-Order PS
3.4. The Relationship Among the Three Kinds of Tunable OAM Modes
4. Methods for Generation of Tunable OAM
4.1. Free Space Method for Generation of Tunable OAM
4.2. The Fiber-Based Generation of Tunable OAM
5. Discussion and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Paterson, L. Controlled Rotation of Optically Trapped Microscopic Particles. Science 2001, 292, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Simpson, N.B.; Dholakia, K.; Allen, L.; Padgett, M.J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 1997, 22, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.; Allen, L. Optical tweezers and spanners. Phys. World 1997, 10, 35–38. [Google Scholar] [CrossRef]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 2002, 88, 013601. [Google Scholar] [CrossRef] [PubMed]
- Krenn, M.; Malik, M.; Erhard, M.; Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2017, 375, 20150442. [Google Scholar] [CrossRef]
- Jack, B.; Yao, A.M.; Leach, J.; Romero, J.; Franke-Arnold, S.; Ireland, D.G.; Barnett, S.M.; Padgett, M.J. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. Phys. Rev. A 2010, 81, 043844. [Google Scholar] [CrossRef] [Green Version]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of Orbital Angular Momentum States of Photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef]
- Vaziri, A.; Weihs, G.; Zeilinger, A. Experimental Two-Photon, Three-Dimensional Entanglement for Quantum Communication. Phys. Rev. Lett. 2002, 89, 240401. [Google Scholar] [CrossRef]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Gregg, P.; Karimi, E.; Rubano, A.; Marrucci, L.; Boyd, R.; Ramachandran, S. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica 2015, 2, 900–903. [Google Scholar] [CrossRef] [Green Version]
- Bernet, S.; Jesacher, A.; Severin, F.; Maurer, C.; Ritsch-Marte, M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express 2006, 14, 3792–3805. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.J.; Allen, L. Light with a twist in its tail. Contemp. Phys. 2000, 41, 275–285. [Google Scholar] [CrossRef]
- Wang, J. Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech. Astron. 2019, 62, 034201. [Google Scholar] [CrossRef]
- Elias, N.M. Photon orbital angular momentum in astronomy. Astron. Astrophys. 2008, 492, 883–922. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.H.J.; Uhrig, K.; Spatz, J.P.; Curtis, J.P. Tuning the orbital angular momentum in optical vortex beams. Opt. Express 2006, 14, 6604–6612. [Google Scholar] [CrossRef]
- Gecevicius, M.; Drevinskas, R.; Beresna, M.; Kazansky, P.G. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl. Phys. Lett. 2014, 104, 231110. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Gibson, G.; Courtial, J.; Padgett, M.J.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.M.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 2004, 12, 5448–5456. [Google Scholar] [CrossRef] [Green Version]
- Heckenberg, N.R.; Mcduff, R.; Smith, C.P.; White, A.G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phase plate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Beijersbergen, W.M.; Allen, V.D.; Veen, E.L.; Woerdman, O.H. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Marrucci, L.; Karimi, E.; Slussarenko, S.; Piccirillo, B.; Santamato, E.; Nagali, E.; Sciarrino, F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 2011, 13, 064001. [Google Scholar] [CrossRef]
- Ramachandran, S. Optical Vortices in Fiber. Nanophotonics 2013, 2, 455–474. [Google Scholar] [CrossRef]
- Niederriter, R.D.; Siemens, M.E.; Gopinath, J.T. Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber. Opt. Lett. 2016, 41, 3213–3216. [Google Scholar] [CrossRef]
- Niederriter, R.D.; Siemens, M.E.; Gopinath, J.T. Simultaneous control of orbital angular momentum and beam profile in two-mode polarization-maintaining fiber. Opt. Lett. 2016, 41, 5736–5739. [Google Scholar] [CrossRef]
- Padgett, M.J.; Courtial, J. Poincare-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 1999, 24, 430–432. [Google Scholar] [CrossRef]
- Kumar, A.; Ajoy, G. Poincaré Sphere Representation of Polarized Light. In Polarization of Light with Applications in Optical Fibers; SPIE: Bellingham WA, USA, 2011; Volume TT90, pp. 121–134. [Google Scholar]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to, applications. J. Syst. Sci. Complex. 2009, 27, 899–910. [Google Scholar] [CrossRef]
- Deng, D.; Guo, Q. Analytical vectorial structure of radially polarized light beams. Opt. Lett. 2007, 32, 2711–2713. [Google Scholar] [CrossRef]
- Kozawa, Y.; Sato, S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express 2010, 18, 10828–10833. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, H.; Li, J.; Ling, L.; Feng, B.; Li, Z. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt. Lett. 2012, 37, 1694–1696. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, A.V.; Niziev, V.G. Laser beams with axially symmetric polarization. J. Appl. Phys. 2000, 33, 1817–1822. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.; Wang, S.; Zhou, J. Minimized spot of annular radially polarized focusing beam. Opt. Lett. 2013, 38, 1331–1333. [Google Scholar]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef]
- Holleczek, A.; Aiello, A.; Gabriel, C.; Marquardt, C.; Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 2011, 19, 9714–9736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roxworthy, B.J.; Toussaint, K.C.J. Optical trapping efficiencies from n-phase cylindrical vector beams. Proc. SPIE 2011, 7950, 2362–2375. [Google Scholar]
- Zhao, Z.; Wang, J.; Li, S.; Willner, A.E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt. Lett. 2013, 38, 932–934. [Google Scholar] [CrossRef]
- Qiu, C.; Palima, D.; Novitsky, A.; Gao, D.; Ding, W.; Zhukovsky, S.V.; Gluckstad, J. Engineering light-matter interaction for emerging optical manipulation applications. Nanophotonics 2014, 3, 181–201. [Google Scholar] [CrossRef]
- Yi, X.; Liu, Y.; Ling, X.; Zhou, X.; Ke, Y.; Luo, H.; Wen, S.; Fan, D. Hybrid-order Poincare sphere. Phys. Rev. A 2015, 91, 023801. [Google Scholar] [CrossRef]
- Schmitz, C.H.J.; Spatz, J.P.; Curtis, J.E. High-precision steering of holographic optical tweezers. Opt. Express 2005, 13, 8678–8685. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Cizmar, T.; Dalgarno, H.I.C.; Ashok, P.C.; Gunn-Moore, F.J.; Dholakia, K. Interference-free superposition of nonzero order light modes: Functionalized optical landscapes. Appl. Phys. Lett. 2011, 98, 081114. [Google Scholar] [CrossRef] [Green Version]
- Curtis, E.; Grier, G. Modulated optical vortices. Opt. Lett. 2003, 28, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Yang, Y.; Cheng, W.; Zhan, Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express 2013, 21, 20692–20706. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Davis, J.A.; Hernandez, T.M.; Cottrell, D.M.; Sand, D. Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express 2012, 20, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, X.; Liu, Y.; Ling, X.; Luo, H. Generation of arbitrary cylindrical vector beams on the higher order Poincare sphere. Opt. Lett. 2014, 39, 5274–5276. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Tailoring of arbitrary optical vector beam. New J. Phys. 2007, 9, 78. [Google Scholar] [CrossRef]
- Tripathi, S.; Toussaint, K.C. Versatile generation of optical vector fields and vector beams using a non-interferometric approach. Opt. Express 2012, 20, 10788–10795. [Google Scholar] [CrossRef] [PubMed]
- Chensheng, W.; Jonathan, K.; Rzasa, J.R.; Paulson, D.A.; Davis, C.C. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications. Appl. Opt. 2018, 57, 2337–2345. [Google Scholar]
- Lou, S.; Zhou, Y.; Yuan, Y.; Lin, T.; Fan, F.; Wang, X.; Huang, H.; Wen, S. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. Opt. Express 2019, 27, 8596–8604. [Google Scholar] [CrossRef] [PubMed]
- Gregg, P.; Mirhosseini, M.; Rubano, A.; Marrucci, L.; Karimi, E.; Boyd, R.W.; Ramachandran, S. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. Opt. Lett. 2015, 40, 1729–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darryl, N.; Filippus, S.R.; Dudley, A.; Litvin1, I.; Piccirillo, B.; Marucci, L.; Forbes, A. Controlled generation of higher-order Poincare sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar]
- Liu, Z.; Liu, Y.; Ke, Y.; Liu, Y.; Shu, W.; Luo, H.; Wen, S. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photonics Res. 2017, 1, 19–25. [Google Scholar] [CrossRef]
- Liu, Y.; Ling, X.; Yi, X.; Zhou, X.; Luo, H.; Wen, S. Realization of polarization evolution on higher-order Poincare sphere with metasurface. Appl. Phys. Lett. 2014, 104, 1–4. [Google Scholar] [CrossRef]
- Birks, T.A.; Gris-Sánchez, I.; Yerolatsitis, S.; Leon-Saval, S.G.; Thomson, R.R. The photonic lantern. Adv. Opt. Photonics 2015, 7, 107–167. [Google Scholar] [CrossRef] [Green Version]
- Park, K.J.; Song, K.Y.; Kim, Y.K.; Lee, J.H.; Kim, B.Y. Broadband mode division multiplexer using all-fiber mode selective couplers. Opt. Express 2016, 24, 3543–3549. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Fontaine, N.K.; Li, J.; Ryf, R.; Liu, Y. Broadband and low-loss mode scramblers using CO2-laser inscribed long-period gratings. Opt. Lett. 2018, 43, 2868–2871. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, G.; Lian, Y.; Zhu, B.; Jin, W.; Jian, S. Tunable orbital angular momentum generation in optical fibers. Opt. Lett. 2016, 41, 3535–3538. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Y.; Mo, Q.; Li, W.; Tian, Y.; Liu, Z.; Wu, J. Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator. IEEE Photonics J. 2017, 8, 1–7. [Google Scholar]
- Jiang, Y.; Ren, G.; Shen, Y.; Xu, Y.; Jin, W.; Wu, Y.; Jian, W.; Jian, S. Two-dimensional tunable orbital angular momentum generation using a vortex fiber. Opt. Lett. 2017, 42, 5014–5017. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mo, Q.; Hu, X.; Du, C.; Wang, J. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett. 2015, 40, 4376–4379. [Google Scholar] [CrossRef] [PubMed]
- Bozinovic, N.; Golowich, S.; Kristensen, P.; Ramachandran, S. Control of orbital angular momentum of light with optical fibers. Opt. Lett. 2012, 37, 2451–2453. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Ren, G.; Shen, Y.; Jiang, Y.; Zhu, B.; Jian, S. Tunable Orbital Angular Momentum Generation Using All-Fiber Fused Coupler. IEEE Photonics Tech. Lett. 2017, 30, 99–102. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, G.; Li, H.; Tang, M.; Jin, W.; Jian, W.; Jian, S. Tunable Orbital Angular Momentum Generation Based on Two Orthogonal LP Modes in Optical Fibers. IEEE Photonics Tech. Lett. 2017, 29, 901–904. [Google Scholar] [CrossRef]
- Sihan, W.; Yan, L.; Lipeng, F.; Li, W.; Qiu, J.; Zuo, Y.; Hong, X.; Yu, H.; Chen, R.; Giles, I.P.; et al. Continuously tunable orbital angular momentum generation controlled by input linear polarization. Opt. Lett. 2018, 43, 2130–2133. [Google Scholar]
Adjustable Variation | Reference | Device | The Type of Tunable OAM |
---|---|---|---|
Phase distribution | [17,42,43,44,45] | SLM | Orbital PS |
[46,47] | SLM + QWP | Three PSs | |
[51] | DMs | Orbital PS | |
[52] | Q-plate | Hybrid-order PS | |
Interference | [48,49] | SLM | Higher- or Hybrid-order PS |
Input polarization | [50] | SLM + QWP | Higher-order PS |
[52,53,54,55] | Q plate + SPP | Higher- or Hybrid-order PS | |
[56] | Metasurface | Higher-order PS |
Adjustable Variation | Reference | Combination Modes | Adjusting Method | The Type of Tunable OAM |
---|---|---|---|---|
Relative Phase () | [63] | LP11ax(y) and LP11bx(y) | Stress the fiber by a pair of flat slabs | Orbital PS |
[61] | LP11ax(y) and LP11bx(y) | Operating wavelength λ in the PMF | Orbital PS | |
[26,27] | LP11ax(y) and LP11bx(y) | Piezo-driven delay stage | Orbital PS | |
[62] | Wavelength λ in the ring-core fiber | Orbital PS | ||
[64] | , | Bend and twist RCF by paddle-type polarization controller | Orbital and higher-order PS | |
Polarization direction | [60,65] | Rotate polarizer | Orbital PS | |
[62,66] | LP11ax and LP11by (LP11ax and LP11by) | Rotate polarizer | Orbital PS | |
[62] | , | Rotate polarizer | Orbital PS | |
Input polarization | [67] | LP11a | Adjust single mode PC | Orbital PS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Li, Y.; Wu, S.; Li, W.; Qiu, J.; Guo, H.; Hong, X.; Zuo, Y.; Wu, J. A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation. Appl. Sci. 2019, 9, 2408. https://doi.org/10.3390/app9122408
Feng L, Li Y, Wu S, Li W, Qiu J, Guo H, Hong X, Zuo Y, Wu J. A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation. Applied Sciences. 2019; 9(12):2408. https://doi.org/10.3390/app9122408
Chicago/Turabian StyleFeng, Lipeng, Yan Li, Sihan Wu, Wei Li, Jifang Qiu, Hongxiang Guo, Xiaobin Hong, Yong Zuo, and Jian Wu. 2019. "A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation" Applied Sciences 9, no. 12: 2408. https://doi.org/10.3390/app9122408
APA StyleFeng, L., Li, Y., Wu, S., Li, W., Qiu, J., Guo, H., Hong, X., Zuo, Y., & Wu, J. (2019). A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation. Applied Sciences, 9(12), 2408. https://doi.org/10.3390/app9122408