Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
2.1. Problem Formulation
2.2. RBF Neural Networks
2.3. PSO Algorithm
3. Improved PSO-RBFNN Model
3.1. Improved PSO Algorithm
3.1.1. Time-Varying Learning Factors
3.1.2. The Addition of Local Best Information
3.2. Improved PSO-RBFNN
4. Fast Multi-Objective Antenna Optimization Framework Combining MOEAs and Improved PSO-RBFNN Surrogate Model
- Predefine antenna geometry vector x and design space X;
- Obtain the sample set S by sampling randomly in the design space X and obtain the response set Y by calling for EM simulation software;
- Obtain the optimal RBFNN parameters using improved PSO based on S, Y;
- Construct the improved PSO-RBFNN model ;
- Optimize the population by MOEAs and ;
- Stop when the termination condition is satisfied; otherwise, turn to step 5.
5. Verification Case Study and Discussions
5.1. The Improved PSO-RBFNN Antenna Surrogate Model
5.2. Pareto-Optimal Designs of Planar Miniaturized Multiband Antenna
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, K.; Jang, D.H.; Kang, S.I.; Lee, J.H.; Chung, T.K.; Kim, H.S. Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design. IEEE Trans. Magn. 2016, 52. [Google Scholar] [CrossRef]
- Dong, J.; Li, Q.; Deng, L. Design of fragment-type antenna structure using an improved BPSO. IEEE Trans. Antennas Propag. 2018, 66, 564–571. [Google Scholar] [CrossRef]
- Carvalho, R.; Saldanha, R.R.; Gomes, B.N.; Lisboa, A.C.; Martins, A.X. A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas. IEEE Trans. Magn. 2012, 48, 803–806. [Google Scholar] [CrossRef]
- Noras, J.M.; Abd-Alhameed, R.A.; Abdulraheem, Y.I.; Abdullah, A.S.; Mohammed, H.J.; Ali, R.S. Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the firefly algorithm. IET Microw. Antennas Propag. 2016, 10, 31–37. [Google Scholar]
- Koziel, S.; Ogurtsov, S. Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Antennas Propag. 2013, 61, 5931–5939. [Google Scholar] [CrossRef]
- Dong, J.; Li, Q.; Deng, L. Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model. AEU-Int. J. Electron. Commun. 2017, 72, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Aliakbarian, H.; Ma, Z.; Vandenbosch, G.A.; Gielen, G.; Excell, P. An Efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 2014, 62, 7–18. [Google Scholar] [CrossRef]
- Jacobs, J.P. Efficient Resonant Frequency Modeling for Dual-Band Microstrip Antennas by Gaussian Process Regression. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 337–341. [Google Scholar] [CrossRef]
- Qin, W.; Dong, J.; Wang, M.; Li, Y.; Wang, S. Fast Antenna Design Using Multi-Objective Evolutionary Algorithms and Artificial Neural Networks. In Proceedings of the 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018. [Google Scholar]
- Dong, J.; Qin, W.; Wang, M. Fast Multi-Objective Optimization of Multi-Parameter Antenna Structures Based on Improved BPNN Surrogate Model. IEEE Access 2019, 7, 77692–77701. [Google Scholar] [CrossRef]
- Mohamed, M.D.A.; Soliman, E.A.; El-Gamal, M.A. Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks. J. Electromagn. Waves Appl. 2006, 20, 1101–1114. [Google Scholar] [CrossRef]
- Mishra, S.; Yadav, R.N.; Singh, R.P. Directivity estimations for short dipole antenna arrays using radial basis function neural networks. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1219–1222. [Google Scholar] [CrossRef]
- Jones, D.L. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003. [Google Scholar]
- Thakare, V.V.; Singhal, P.K. Bandwidth Analysis by Introducing Slots in Microstrip Antenna Design Using ANN. Prog. Electromagn. Res. M 2009, 9, 107–122. [Google Scholar] [CrossRef]
- Chen, D. Research on traffic flow prediction in the big data environment based on the improved RBF neural network. IEEE Trans. Ind. Inform. 2017, 13, 2000–2008. [Google Scholar] [CrossRef]
- Li, M.M.; Verma, B. Nonlinear curve fitting to stopping power data using RBF neural networks. Expert Syst. Appl. 2016, 45, 161–171. [Google Scholar] [CrossRef]
- Huang, S.C.; Do, B.H. Radial Basis Function Based Neural Network for Motion Detection in Dynamic Scenes. IEEE Trans. Cybern. 2013, 44, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Q.; Sun, C.; Lei, S.; Liu, Y.; Song, Y. RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment. IEEE Trans. Power Syst. 2008, 23, 853–858. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Z.B.; Huang, G.B.; Wang, D.H. Global convergence of online BP training with dynamic learning rate. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 330–341. [Google Scholar] [CrossRef]
- Xu, Z.B.; Zhang, R.; Jing, W.F. When does online bp training converge? IEEE Trans. Neural Netw. 2009, 20, 1529–1539. [Google Scholar]
- Feng, H.M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing 2006, 70, 241–251. [Google Scholar] [CrossRef]
- Fei, X.; Sun, Y.; Ruan, X. A simulation analysis method based on PSO-RBF model and its application. Clust. Comput. 2018, 1–7. [Google Scholar] [CrossRef]
- Gutierrez, P.A.; Hervas-Martinez, C.; Martinez-Estudillo, F.J. Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Netw. 2011, 22, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Ko, C.N. Time series prediction using rbf neural networks with a nonlinear time-varying evolution pso algorithm. Neurocomputing 2009, 73, 449–460. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiwewicz, A. Fast multi-objective surrogate-assisted design of multi-parameter antenna structures through rotational design space reduction. IET Microw. Antennas Propag. 2016, 10, 624–630. [Google Scholar] [CrossRef]
- Moody, J.; Darken, C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989, 1, 281–294. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; He, H.; Irwin, G.W. A new discrete-continuous algorithm for radial basis function networks construction. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1785–1798. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Liao, C.; Lin, W.; Chang, L.; Zhong, X.M. Hybrid-Surrogate-Model-Based Efficient Global Optimization for High-Dimensional Antenna Design. Prog. Electromagn. Res. 2012, 124, 85–100. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Lynn, N.; Suganthan, P.N. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Islam, M.J.; Li, X.; Mei, Y. A Time-Varying Transfer Function for Balancing the Exploration and Exploitation ability of a Binary PSO. Appl. Soft Comput. 2017, 59, 182–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q. Prediction of building energy consumption based on PSO-RBF neural network. In Proceedings of the 2014 IEEE International Conference on System Science and Engineering (ICSSE), Shanghai, China, 11–13 July 2014; pp. 60–63. [Google Scholar]
- Jin, N.; Rahmat-Samii, Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag. 2007, 55, 556–567. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
Parameters | Range |
---|---|
d | [7, 10] |
l | [26, 34] |
l1 | [11, 14] |
l2 | [8, 10] |
l3 | [6, 8] |
l4 | [10, 14] |
w | [17, 23] |
w1 | [2, 4] |
w2 | [2, 4] |
w3 | [0.5, 1.5] |
Methods | HFSS | Kriging [5] | RBFNN [11] | PSO-RBFNN [24] | Improved PSO-RBFNN |
---|---|---|---|---|---|
Total time | 1017.820 | 0.413 | 0.165 | 0.043 | 0.039 |
Average time | 50.891 | 0.021 | 0.008 | 0.002 | 0.002 |
Designs | |||||
---|---|---|---|---|---|
−16.02 | −15.67 | −15.45 | −15.03 | −14.71 | |
634.92 | 628.00 | 617.97 | 602.76 | 577.17 | |
d | 8.58 | 8.61 | 8.76 | 8.69 | 8.27 |
l | 31.20 | 31.40 | 29.26 | 29.26 | 28.90 |
l1 | 12.70 | 12.50 | 12.00 | 11.95 | 11.09 |
l2 | 8.80 | 8.80 | 9.04 | 9.04 | 8.79 |
l3 | 6.92 | 6.90 | 7.28 | 7.21 | 7.01 |
l4 | 11.43 | 11.43 | 11.73 | 11.73 | 11.37 |
w | 20.35 | 20.00 | 21.12 | 20.60 | 19.97 |
w1 | 3.23 | 3.23 | 3.34 | 3.31 | 3.13 |
w2 | 3.10 | 3.10 | 3.27 | 3.27 | 3.27 |
w3 | 1.01 | 1.00 | 1.19 | 1.17 | 1.01 |
Optimization Method | Number of EM Simulations | CPU Time/h | |
---|---|---|---|
Total | Relative | ||
Method 1 | 15,100 | 213.51 | 100% |
Method 2 | 200 | 2.93 | 1.37% |
This work | 200 | 2.98 | 1.40% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Li, Y.; Wang, M. Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm. Appl. Sci. 2019, 9, 2589. https://doi.org/10.3390/app9132589
Dong J, Li Y, Wang M. Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm. Applied Sciences. 2019; 9(13):2589. https://doi.org/10.3390/app9132589
Chicago/Turabian StyleDong, Jian, Yingjuan Li, and Meng Wang. 2019. "Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm" Applied Sciences 9, no. 13: 2589. https://doi.org/10.3390/app9132589
APA StyleDong, J., Li, Y., & Wang, M. (2019). Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm. Applied Sciences, 9(13), 2589. https://doi.org/10.3390/app9132589