Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Structure
2.2. The Process of Crosslinking
2.3. Compound Models
3. Results and Discussion
3.1. Interfacial Structure
3.2. Interfacial Bonding Strength
3.3. Molecular Chain Mobility
3.4. MultiRegional Interface Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolon, D.A. Epoxy chemistry for electrical insulation. IEEE Electr. Insul. Mag. 2002, 11, 10–18. [Google Scholar] [CrossRef]
- Mohan, P. A critical review: The modification, properties, and applications of epoxy resins. Polym.-Plast. Technol. Eng. 2013, 52, 107–125. [Google Scholar] [CrossRef]
- Peng, W.; Huang, X.; Yu, J.; Jiang, P.; Liu, W. Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1201–1209. [Google Scholar] [CrossRef]
- Vijayaraghavan, V.; Zhang, L.C. Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation. Nanomaterials 2018, 8, 546. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.K.; Abukmail, A.; Hassiba, A.J.; Mauritz, K.A.; Elzatahry, A.A. PVA/Chitosan/Silver Nanoparticles Electrospun Nanocomposites: Molecular Relaxations Investigated by Modern Broadband Dielectric Spectroscopy. Nanomaterials 2018, 8, 888. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, X.; Zhu, Y.; Jiang, P. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754. [Google Scholar] [CrossRef]
- Luo, S.B.; Shen, Y.B.; Yu, S.H.; Wan, Y.J.; Liao, W.H.; Sun, R.; Wong, C.P. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 2017, 10, 137–144. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wen, H.; Wu, Y.J. Computational Thermomechanical Properties of Silica Epoxy Nanocomposites by Molecular Dynamic Simulation. Polymers 2017, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Z.; He, C.G.; Wen, Y.F.; Zhou, X.P.; Xie, X.L.; Ye, Y.S.; Mai, Y.W. Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol. 2018, 160, 42–49. [Google Scholar] [CrossRef]
- Vahedi, A.; Lahidjani, M.H.S.; Shakhesi, S. Multiscale modeling of thermal conductivity of carbon nanotube epoxy nanocomposites. Phys. B Condens. Matter 2018, 550, 39–46. [Google Scholar] [CrossRef]
- Dmitry, V.S.; Konstantin, L.F.; Dmitri, V.G. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 2018, 10, 17477–17493. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide. Compos. Part B Eng. 2019, 164, 1–9. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.; Owuor, P.S.; Machado, L.D.; Woellner, C.F.; Pedrotti, J.J.; Jaques, Y.M.; Kosolwattana, S.; Chipara, A.; Silva, W.M.; et al. Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos. Sci Technol. 2018, 159, 103–110. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.H.; Zhou, C.; Zhu, W.H. A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites. Int. J. Heat Mass Transf. 2018, 126, 353–362. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Singh, P.K.; Sharma, K. Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr. Ferroelectr. 2018, 186, 106–114. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.Y.; Sun, B.; Jiang, P.K. Highly Thermally Conductive yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2019, 13, 337–345. [Google Scholar] [CrossRef]
- Mehdi, N.; Farnaz, E.; Mohammad, N.; Hamed, N. Reinforcing effect of amine-functionalized and carboxylated porous graphene on toughness, thermal stability, and electrical conductivity of epoxy-based nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47475. [Google Scholar] [CrossRef]
- Adnan, M.M.; Tveten, E.G.; Glaum, J.; Glomm Ese, M.; Hvidsten, S.; Glomm, W.; Einarsrud, M. Epoxy-Based Nanocomposites for High-Voltage Insulation: A Review. Adv. Electron. Mater. 2018, 5, 1800505. [Google Scholar] [CrossRef]
- Jesson, D.A.; Watts, J.F. The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification. Polym. Rev. 2012, 52, 321–354. [Google Scholar] [CrossRef]
- Iturrondobeitia, A.; Goni, A.; Muro, I.G.; Lezama, L.; Rojo, T. Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes. Nanomaterials 2017, 7, 423. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.L.; Chi, Y.; Piao, M.X.; Jin, C.; Zhang, H.; Li, Z.H.; Wei, W. Effect of Graphene Nanowall Size on the Interfacial Strength of Carbon Fiber Reinforced Composites. Nanomaterials 2018, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Zhao, Y.Y.; Molhave, K.; Sun, H.Y. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications. Nanomaterials 2017, 7, 382. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Yan, L.F.; Song, W.Y.; Xu, D.G. Interfacial characteristics of carbon nanotube-polymer composites A review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 149–169. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials. Adv. Mater. 2017, 30, 1703624. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; You, J.; Dai, J.; Chen, Y.M.; Li, Y. In-Situ Synthesis of Hydrogen Titanate Nanotube/Graphene Composites with a Chemically Bonded Interface and Enhanced Visible Photocatalytic Activity. Nanomaterials 2018, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Huang, X.; Wu, C.; Wu, X.F.; Wang, G.L.; Jiang, P.K. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 2012, 53, 471–480. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Yan, C.; Xu, H.B.; Liu, D.; Shi, P.C.; Zhu, Y.D. Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface. Appl. Surf. Sci. 2018, 452, 286–298. [Google Scholar] [CrossRef]
- Kin, G.; Lee, H.; Rim, H.J.; Kim, J.; Kin, K.; Roh, J.W.; Choi, S.; Kim, B.W.; Lee, K.H.; Lee, W. Dependence of mechanical and thermoelectric properties of Mg2Si-Sn nanocomposites on interface density. J. Alloy. Compd. 2018, 769, 53–58. [Google Scholar] [CrossRef]
- Lee, S.O.; Choi, S.H.; Kwon, S.H.; Rhee, K.Y.; Park, S.J. Modification of Surface Functionality of Multi-Walled Carbon Nanotubes on Fracture Toughness of Basalt Fiber-Reinforced Composites. Compos. Part B Eng. 2015, 79, 47–52. [Google Scholar] [CrossRef]
- Gonzalez-Chi, P.I.; Rodríguez-Uicab, O.; Martin-Barrera, C.; Uribe-calderon, J.; Canche, G.; Yazdani, M.; May-Pat, A.; Aviles, F. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites. Compos. Part B Eng. 2017, 122, 16–22. [Google Scholar] [CrossRef]
- Fu, J.S.; Zhang, M.J.; Jin, L.; Liu, L.; Li, N.; Shang, L.; Li, M.; Xiao, L.H.; Ao, Y.H. Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self-assembly GO/SiO2 multilayers films on carbon fibers surface. Appl. Surf. Sci. 2019, 470, 543–554. [Google Scholar] [CrossRef]
- Peng, S.M.; Yang, X.; Yang, Y.; Zhou, S.J.; Jun, H.; Li, Q.; He, J.L. Direct Detection of Local Electric Polarization in the Interfacial Region in Ferroelectric Polymer Nanocomposites. Adv. Mater. 2019, 5, e1807722. [Google Scholar] [CrossRef] [PubMed]
- Pitsa, D.; Danikas, M.G. Interfaces features in polymer nanocomposites: A review of proposed models. Nano 2011, 6, 497–508. [Google Scholar] [CrossRef]
- Lewis, T.J. A Model for Nano-composite Polymer Dielectrics under Electrical Stress. In Proceedings of the IEEE International Conference on Solid Dielectrics, Winchester, UK, 8–13 July 2007; pp. 11–14. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glasses transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a Multi-Core Model for polymer Nanocomposite Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Tanaka, T.; Matsunawa, A.; Ohki, Y.; Kozako, M.; Kohtoh, M.; Okabe, S. Treeing Phenomena in Epoxy/Alumina Nano-composites and Interpretation by a Multi-Core Model. IEEJ Trans. Fundam. Mater. 2006, 126, 1128–1135. [Google Scholar] [CrossRef]
- Bu, W.B.; Yin, J.H.; Song, Y.L.; Liu, X.X.; Yuani, P.L.; Fan, Y. Effect of nanometer inorganic particles on DC breakdown characteristics of Al2O3 /PI films. In Proceedings of the International Conference Properties and Applications of Dielectric Materials, Haibin, China, 19–23 July 2009; pp. 820–822. [Google Scholar] [CrossRef]
- Chawla, R.; Sharma, S. Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos. Sci. Technol. 2017, 144, 169–177. [Google Scholar] [CrossRef]
- Rafiee, R.; Mahdavi, M. Characterizing nanotube-polymer interaction using molecular dynamics simulation. Comput. Mater. Sci. 2016, 112, 356–363. [Google Scholar] [CrossRef]
- Li, C.Y.; Browning, A.R.; Christensen, S.; Strachan, A. Atomistic simulations on multilayer graphene reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1293–1300. [Google Scholar] [CrossRef]
- Hadden, C.M.; Jensen, B.D.; Bandyopadhyay, A.; Odegard, G.M.; Koo, A.; Liang, R. Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities. Compos. Sci. Technol. 2013, 76, 92–99. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Lian, Q.S.; Cheng, J.; Zhang, J.Y. Influence of cross-linking density on the structure and properties of the interphase within supported ultrathin epoxy films. J. Mater. Sci. 2016, 51, 9019–9030. [Google Scholar] [CrossRef]
- Radue, M.S.; Odegard, G.M. Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices. Compos. Sci. Technol. 2018, 166, 20–26. [Google Scholar] [CrossRef]
- Li, S.T.; Xie, D.R.; Qu, G.H.; Yang, L.Q.; Min, D.M.; Cheng, Y.H. Tailoring Interfacial Compatibility and Electrical Breakdown Properties in Polypropylene based Composites by Surface Functionalized POSS. Appl. Surf. Sci. 2019, 478, 451–458. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Xiong, X.; Drummer, D.; Jiang, B.Y. Interfacial interaction and joining property of direct injection- molded polymer-metal hybrid structures: A molecular dynamics simulation study. Appl. Surf. Sci. 2019, 478, 680–689. [Google Scholar] [CrossRef]
- Li, S.; Yin, G.; Chen, G.; Li, J.; Bai, S.; Zhong, L.S.; Zhang, Y.X.; Lei, Q.Q. Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1523–1535. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Zhao, X.F.; Sui, G.; Yang, X.P. Surface Sizing Treated MWCNTs and Its Effect on the Wettability, Interfacial Interaction and Flexural Properties of MWCNT/Epoxy Nanocomposites. Nanomaterials 2018, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Zhao, W.J.; Wu, Y.H.; Wang, D.L.; Feng, R.T. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Appl. Surf. Sci. 2018, 434, 1311–1320. [Google Scholar] [CrossRef]
- Xie, Y.C.; Wang, J.; Yu, Y.Y.; Jiang, W.R.; Zhang, Z.C. Enhancing Breakdown Strength and Energy Storage Performance of PVDF-based Nanocomposites by Adding Exfoliated Boron Nitride. Appl. Surf. Sci. 2018, 440, 1150–1158. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, R.J.; Wang, Y.G.; Wu, Z.X.; Guo, S.B.; Zhang, H.; Li, J.; Huang, C.J.; Wang, W.; Li, L.F. Aminopropyltrimethoxysilane-functionalized boron nitride nanotube based epoxy nanocomposites with simultaneous high thermal conductivity and excellent electrical insulation. J. Mater. Chem. A 2018, 6, 20663–20668. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Chen, L.; Cui, L.; Zhang, Y.W.; Du, X.Z. Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields. Polymer 2011, 52, 2445–2452. [Google Scholar] [CrossRef]
- Yang, N.N.; Zeng, X.L.; Lu, J.B.; Sun, R.; Wong, C.P. Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl. Phys. Lett. 2018, 113, 171904. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Cox, M.C.; Li, B. Surface modification of hexagonal boron nitride nanomaterials: A review. J. Mater. Sci. 2018, 53, 66–99. [Google Scholar] [CrossRef]
- Zhu, M.X.; Li, J.C.; Chen, J.M.; Song, H.G.; Zhang, H.Y. Improving thermal conductivity of epoxy resin by filling boron nitride nanomaterials: A molecular dynamics investigation. Comput. Mater. Sci. 2019, 164, 108–115. [Google Scholar] [CrossRef]
- Guseva, D.V.; Rudyak, V.Y.; Komarov, P.V.; Sulimov, A.V.; Bulgakov, B.A.; Chertovich, A.V. Crosslinking Mechanisms, Structure and Glass Transition in Phthalonitrile Resins: Insight from Computer Multiscale Simulations and Experiments. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 362–374. [Google Scholar] [CrossRef]
- Budzien, J.; Thompson, A.P.; Zybin, S.V. Reactive Molecular Dynamics Simulations of Shock through a Single Crystal of Pentaerythritol Tetranitrate. J. Phys. Chem. B 2009, 113, 13142–13151. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.L.; Meguid, S.A. Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 2015, 69, 1–15. [Google Scholar] [CrossRef]
- Ananth, G.R.; Michael, S.S.; Daniel, B. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications. J. Phys. Lett. 2018, 9, 1584–1591. [Google Scholar] [CrossRef]
- Los, J.H.; Kroes, M.H.J.; Albe, K.; Gordillo, R.M.; Katsnelson, M.I.; Fasolino, A. Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN. Phys. Rev. B 2017, 96, 184108. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Dai, Z.H.; Li, T.; Gao, Y.; Xu, J.; Weng, Y.X.; He, J.L.; Guo, B.H. Improved dielectric and energy storage properties of poly(vinyl alcohol) nanocomposites by strengthening interfacial hydrogen-bonding interaction. Colloid Surf. A Physicochem. Eng. Asp. 2018, 548, 179–190. [Google Scholar] [CrossRef]
- Hofmann, D.; Heuchel, M.; Yampolskii, Y.; Khotimskii, V.; Shantarovich, V. Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies. Macromolecules 2002, 35, 2129–2140. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, J.; Zhu, M.; Song, H.; Zhang, H. Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. Appl. Sci. 2019, 9, 2832. https://doi.org/10.3390/app9142832
Li J, Chen J, Zhu M, Song H, Zhang H. Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. Applied Sciences. 2019; 9(14):2832. https://doi.org/10.3390/app9142832
Chicago/Turabian StyleLi, Jiacai, Jiming Chen, Mingxiao Zhu, Henggao Song, and Hongyu Zhang. 2019. "Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation" Applied Sciences 9, no. 14: 2832. https://doi.org/10.3390/app9142832
APA StyleLi, J., Chen, J., Zhu, M., Song, H., & Zhang, H. (2019). Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. Applied Sciences, 9(14), 2832. https://doi.org/10.3390/app9142832