Food Salt Characterization in Terms of Radioactivity and Metals Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Gamma Spectrometry Analysis and Evaluation of Radiological Hazard Effects
2.3. ICP-MS Analysis
3. Results and Discussion
3.1. Radioactivity Analysis
3.2. The Annual Effective Dose for Food Ingestion
3.3. Metals Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M.F. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations. J. Instrum. 2016, 11, C10012. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A. Natural radioactivity and elemental composition of beach sands in the Calabria region, south of Italy. Environ. Earth Sci. 2016, 75, 1–7. [Google Scholar] [CrossRef]
- Caridi, F.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Marino, G.; Messina, M.; Belmusto, G. An investigation on airborne particulate radioactivity, heavy metals and polycyclic aromatic hydrocarbons composition in Calabrian selected sites, Southern Italy. Ind. J. Environ. Prot. 2019, 39, 321–326. [Google Scholar]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G. Radon radioactivity in groundwater from the Calabria region, south of Italy. J. Instrum. 2016, 11, P05012. [Google Scholar] [CrossRef]
- Ramsiya, M.; Joseph, A.; Joio, P.J. Estimation of indoor radon and thoron in dwellings of Palakkad, Kerala, India using solid state nuclear track detectors. J. Radiat. Res. Appl. Sci. 2017, 10, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Júnior, J.A.S.; Cardoso, J.J.R.F.; Silva, C.M. Radioactivity levels of basic foodstuffs and dose estimates in Sudan. J. Radioanal. Nucl. Chem. 2006, 269, 451–455. [Google Scholar] [CrossRef]
- Ramachandran, T.V.; Mishra, U.C. Measurement of natural radioactivity levels in Indian foodstuffs by gamma spectrometry. Appl. Radiat. Isot. 1989, 40, 723–726. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A. Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. Eur. Phys. J. Plus 2016, 131, 136. [Google Scholar] [CrossRef]
- Mlwilo, N.A.; Mohammed, N.K.; Spyrou, N.M. Radioactivity levels of staple foodstuffs and dose estimates for most of the Tanzanian population. J. Radiol. Prot. 2007, 27, 471–480. [Google Scholar] [CrossRef]
- Shabaan, D.H. Radioactivity measurements of different types of salt using SSNTD. AIP Conf. Proc. 2018, 1976, 020023. [Google Scholar]
- World Health Organization Nutrition Home Page. Available online: http://www.who.int/nutrition/en/index.html (accessed on 23 May 2019).
- Kansaana, C.; Darko, E.O.; Schandorf, C. Determination of natural radioactivity in saline water and salt from Panbros salt industry limited in the Accra metropolis, Ghana. Int. J. Sci. Technol. 2012, 2, 107–111. [Google Scholar]
- Abojassim, A.A.; Kadhim, S.H.; Hadi, R.J.; Hamed, A. Public exposure to NORMS due to intake of food salt in Iraq. Int. Sci. Pract. E-Conf. Biotechnol. Exp. Trad. Innov. 2016, 1, 43–52. [Google Scholar]
- Oluyide, S.O.; Tchokossa, P.; Orosun, M.M. Natural radioactivity and radiological impact assessment of soil, food and water around iron and steel smelting area in Fashina village, Ile-Ife, Osun state, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 135–143. [Google Scholar] [CrossRef]
- Al-Hamidawi, A.A. Assessment of radiation hazard indices and excess life time cancer risk due to dust storm for Al-Najaf, Iraq. WSEAS Trans. Environ. Dev. 2014, 10, 312–319. [Google Scholar]
- Abojassim, A.A.; Al-Alasadi, L.A.; Shitaken, A.R. Assessment of annual effective dose for natural radioactivity of gamma emitters in biscuit samples in Iraq. J. Food Prot. 2015, 78, 1766–1769. [Google Scholar] [CrossRef] [PubMed]
- The Complete Guide to Black Salt: Origins, Composition, Flavour and Uses. Available online: https://www.thesaltbox.com.au/news/the-complete-guide-to-black-salt-origins-composition-flavour-and-uses/ (accessed on 15 May 2019).
- Stergiou, C.L.; Karageorgiou, S.; Stella, T.; Giouri, K.; Papadopoulou, L.; Melfos, V. Compositional and morphological evaluation of edible salts: Preliminary results. Bull. Geol. Soc. Greece 2016, 50, 2018–2024. [Google Scholar] [CrossRef]
- Higher Health Italian Institute. Monitoring Activity of the National Program for the Prevention of Iodine Deficiency Disorders; Higher Health Italian Institute: Rome, Italy, 2008. [Google Scholar]
- Angle4 Software Home Page. Available online: https://www.angle4.com/ (accessed on 15 January 2019).
- Ortec Gamma Vision Software Manual v. 8.1 2017. Available online: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf (accessed on 18 July 2019).
- Caridi, F.; Marguccio, S.; D’Agostino, M.; Belvedere, A.; Belmusto, G. Natural radioactivity and metal contamination of river sediments in the Calabria region, south of Italy. Eur. Phys. J. Plus 2016, 131, 155. [Google Scholar] [CrossRef]
- Italian Legislative Decree 230/95 and successful modifications.
- Caridi, F.; D’Agostino, M.; Messina, M.; Marcianò, G.; Grioli, L.; Belvedere, A.; Marguccio, S.; Belmusto, G. Lichens as environmental risk detectors. Eur. Phys. J. Plus 2017, 132, 189. [Google Scholar] [CrossRef]
- Bhat, R.; Gomez-Lopez, V.M. Practical Food Safety: Contemporary Issues and Future Directions; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Age-Dependent Doses to the Members of the Public from Intake of Radionuclides Part 5 Compilation of Ingestion and Inhalation Coefficients; ICRP Publication: Ottawa, ON, Canada, 1995. [Google Scholar]
- European Commission. Directorate-General Health and Consumers; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Morais, S.; Garcia e Costa, F.; De Lourdes Pereira, M. Heavy Metals and Human Health, Environmental Health—Emerging Issues and Practice; Jacques Oosthuizen, IntechOpen: London, UK, 2012; pp. 227–246. Available online: https://www.intechopen.com/books/environmental-health-emerging-issues-and-practice/heavy-metals-and-human-health (accessed on 18 July 2019). [CrossRef]
- Biziuk, M.; Kuczynska, J. Mineral Components in Food-Analytical Implications. In Mineral. Components in Foods; Szefer, P., Nriagu, J.O., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 1–31. [Google Scholar]
- Sawyer, C.N.; McCarty, P.L.; Parkin, G.F. Chemistry for Environmental and Engineering and Science, 5th ed.; Mc Graw Hill: New York, NY, USA.
- Harrison, N. Inorganic contaminants in food. In Food Chemical Safety Contaminants, Watson; Woodhead Publishing: Cambridge, UK, 2001; pp. 148–168. [Google Scholar]
- Clarkson, T. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Oehlenschläger, J. Identifying heavy metals in fish In Safety and Quality Issues in Fish Processing, Bremner; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Italian Legislation, DLgs. 106/1997 and successful modifications.
No | Sample ID | Sample Name | Country of Origin |
---|---|---|---|
1 | S1 | Cyprus black | Cyprus island |
2 | S2 | Himalayan pink | Himalayas |
3 | S3 | Hawaii red | Hawaii islands |
4 | S4 | iodized | Italy |
5 | S5 | Hyposodic iodized | Italy |
6 | S6 | Maldon smoked sea | England |
7 | S7 | Common sea | Italy |
8 | S8 | Breton sea | England |
9 | S9 | Persia blue | Iran |
Activity concentration (Bq/g) | Ding (mSv/y) | ||
---|---|---|---|
Sample ID | 40K | 137Cs | |
S1 | 1.76 ± 0.16 | <1.6 | 0.040 |
S2 | 0.89 ± 0.07 | <1.9 | 0.020 |
S3 | 0.79 ± 0.07 | <1.6 | 0.018 |
S4 | 1.06 ± 0.09 | <1.7 | 0.024 |
S5 | 12.1 ± 1.1 | <1.8 | 0.27 |
S6 | 1.47 ± 0.12 | <1.5 | 0.033 |
S7 | 0.93 ± 0.08 | <1.7 | 0.021 |
S8 | 1.51 ± 0.13 | <1.9 | 0.034 |
S9 | 4.55 ± 0.32 | <1.8 | 0.10 |
Sample ID | Metals Concentration (mg/kg) | ||||
---|---|---|---|---|---|
Cu | As | Cd | Hg | Pb | |
S1 | 1.7 | 0.03 | 0.01 | 0.03 | 0.5 |
S2 | 1.2 | 0.02 | 0.01 | 0.05 | 0.2 |
S3 | 1.8 | 0.04 | 0.005 | 0.02 | 0.2 |
S4 | 0.8 | 0.02 | 0.01 | 0.04 | 0.2 |
S5 | 0.6 | 0.01 | 0.01 | 0.02 | 0.5 |
S6 | 0.7 | 0.03 | 0.02 | 0.02 | 0.5 |
S7 | 1.3 | 0.01 | 0.02 | 0.09 | 0.3 |
S8 | 0.9 | 0.1 | 0.01 | 0.02 | 0.6 |
S9 | 1.5 | 0.01 | 0.01 | 0.02 | 0.3 |
Contamination threshold | 2.0 | 0.5 | 0.5 | 0.1 | 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caridi, F.; Messina, M.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Settineri, L.; Belmusto, G. Food Salt Characterization in Terms of Radioactivity and Metals Contamination. Appl. Sci. 2019, 9, 2882. https://doi.org/10.3390/app9142882
Caridi F, Messina M, Belvedere A, D’Agostino M, Marguccio S, Settineri L, Belmusto G. Food Salt Characterization in Terms of Radioactivity and Metals Contamination. Applied Sciences. 2019; 9(14):2882. https://doi.org/10.3390/app9142882
Chicago/Turabian StyleCaridi, Francesco, Maurizio Messina, Alberto Belvedere, Maurizio D’Agostino, Santina Marguccio, Letteria Settineri, and Giovanna Belmusto. 2019. "Food Salt Characterization in Terms of Radioactivity and Metals Contamination" Applied Sciences 9, no. 14: 2882. https://doi.org/10.3390/app9142882
APA StyleCaridi, F., Messina, M., Belvedere, A., D’Agostino, M., Marguccio, S., Settineri, L., & Belmusto, G. (2019). Food Salt Characterization in Terms of Radioactivity and Metals Contamination. Applied Sciences, 9(14), 2882. https://doi.org/10.3390/app9142882