Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench
Abstract
:1. Introduction
2. Device Setup and Mechanism
3. Result and Discussion
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V. Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter. 2002, 14, 3399–3434. [Google Scholar] [CrossRef]
- Wu, Y.F.; Kapolnek, D.; Ibbetson, J.P.; Parikh, P.; Keller, B.P.; Mishra, U.K. Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2001, 28, 586–590. [Google Scholar] [CrossRef]
- Sheppard, S.T.; Doverspike, K.; Pribble, W.L.; Allen, S.T.; Palmour, J.W.; Kehias, L.T.; Jenkins, T.J. High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates. IEEE Electron Device Lett. 1999, 20, 161–163. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Brown, D.F.; Corrion, A.L.; Moyer, H.P.; Burnham, S.; Regan, D.C.; Grabar, R.M.; et al. GaN technology for E, W and G-band applications. In Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
- Hu, X.; Simin, G.; Yang, J.; Khan, M.A.; Gaska, R.; Shur, M.S. Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate. Electron. Lett. 2000, 36, 753. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, H.; Chen, K.J. Normally Off AlGaN/GaN Metal–2DEG Tunnel-Junction Field-Effect Transistors. IEEE Electron Device Lett. 2011, 32, 303–305. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Liu, Y.; Cai, J.; Liu, J.; Wang, M.; Yu, M.; Xie, B.; Wu, W.; Ma, X.; et al. Fabrication of normally off AlGaN/GaN MOSFET using a self-terminating gate recess etching technique. IEEE Electron Device Lett. 2013, 14, 855–857. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zhang, Z.; Yang, D.; Yao, Y. On the Baliga’s Figure-Of-Merits (BFOM) Enhancement of a Novel GaN Nano-Pillar Vertical Field Effect Transistor (FET) with 2DEG Channel and Patterned Substrate. Nanoscale Res. Lett. 2019, 14, 128. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Zhang, Z.; Wang, C.; Yang, D.; Chen, X.; Wang, Z.; Cao, J.; Yao, Y. A High-Performance Tunable LED-Compatible Current Regulator Using an Integrated Voltage Nanosensor. IEEE Trans. Electron Devices 2019, 66, 1917–1923. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Li, H.; Dimitrijev, S.; Wang, J. Mechanism of leakage current increase in p-GaN gate AlGaN/GaN power devices induced by ON-state gate bias. Jpn. J. Appl. Phys. 2018, 57. [Google Scholar] [CrossRef]
- Wu, T.L.; Marcon, D.; You, S.; Posthuma, N.; Bakeroot, B.; Stoffels, S.; van Hove, M.; Groeseneken, G.; Decoutere, S. Forward Bias Gate Breakdown Mechanism in Enhancement-Mode p-GaN Gate AlGaN/GaN High-Electron Mobility Transistors. IEEE Electron Device Lett. 2015, 36, 1001–1003. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Dimitrijev, S. Effect of Hole-Injection on Leakage Degradation in a $ p $-GaN Gate AlGaN/GaN Power Transistor. IEEE Electron Device Lett. 2018, 39, 1203–1206. [Google Scholar] [CrossRef]
- Wei, J.; Liu, S.; Li, B.; Tang, X.; Lu, Y.; Liu, C.; Hua, M.; Zhang, Z.; Tang, G.; Chen, K.J. Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 9.4.1–9.4.4. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Wang, F.; Chen, W.; Zhang, B.; Guo, S.; Yao, Y. Proposal of a novel enhancement type AlGaN/GaN HEMT using recess-free field coupled gate. Superlattices Microstruct. 2018, 122, 343–348. [Google Scholar] [CrossRef]
- Song, D.; Liu, J.; Cheng, Z.; Tang, W.C.W.; Lau, K.M.; Chen, K.J. Normally Off AlGaN/GaN Low-Density Drain HEMT (LDD-HEMT) With Enhanced Breakdown Voltage and Reduced Current Collapse. IEEE Electron Device Lett. 2007, 28, 189–191. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.L.; Ding, N.; Zheng, X.F.; Zhang, P.; Ma, X.H.; Zhang, J.C.; Hao, Y. Simulation and experimentation for low density drain AlGaN/GaN HEMT. Chin. Phys. Lett. 2014, 31. [Google Scholar] [CrossRef]
- Tsou, C.W.; Wei, K.P.; Lian, Y.W.; Hsu, S.S.H. 2.07-kV AlGaN/GaN Schottky Barrier Diodes on Silicon with High Baliga’s Figure-of-Merit. IEEE Electron Device Lett. 2016, 37, 70–73. [Google Scholar] [CrossRef]
- Hatakeyama, Y.; Nomoto, K.; Kaneda, N.; Kawano, T.; Mishima, T.; Nakamura, T. Over 3.0 gw/cm 2 figure-of-merit gan p-n junction diodes on free-standing gan substrates. IEEE Electron Device Lett. 2011, 32, 1674–1676. [Google Scholar] [CrossRef]
- Lu, B.; Sun, M.; Palacios, T. An etch-stop barrier structure for GaN high-electron-mobility transistors. IEEE Electron Device Lett. 2013, 34, 369–371. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Wang, X.; Kang, X.; Zhang, J.; Bao, Q.; Wei, K.; Zheng, Y.; Zhao, C.; Gao, H.; et al. High Uniformity Normally-OFF GaN MIS-HEMTs Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure. IEEE Electron Device Lett. 2016, 37, 1617–1620. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Wang, X.; Kang, X.; Zhang, J.; Fan, J.; Shi, J.; Wei, K.; Zheng, Y.; Gao, H.; et al. Ultrathin-barrier AlGaN/GaN heterostructure: A recess-free technology for manufacturing high-performance GaN-on-Si power devices. IEEE Trans. Electron Devices 2018, 65, 207–214. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Liu, X.; Wang, Y.; Fan, J.; Yang, S.; Yin, H.; Wei, K.; Wang, W.; Gao, H.; et al. Monolithic integration of E/D-mode GaN MIS-HEMTs on ultrathin-barrier AlGaN/GaN heterostructure on Si substrates. Appl. Phys. Express. 2019, 12, 7–11. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, S.; Wang, X.; Kang, X.; Zhao, R.; Zhang, Y.; Zhang, S.; Fan, J.; Yin, H.; Liu, C.; et al. Effects of Fluorine Plasma Treatment on Au-free Ohmic Contacts to Ultrathin-Barrier AlGaN/GaN Heterostructure. IEEE Trans. Electron Devices 2019, 66, 1–6. [Google Scholar] [CrossRef]
- Hahn, H.; Achenbach, J.; Ketteniss, N.; Noculak, A.; Kalisch, H.; Vescan, A. Oxygen addition to fluorine based SiN etch process: Impact on the electrical properties of AlGaN/GaN 2DEG and transistor characteristics. Solid-State Electron. 2012, 67, 90–93. [Google Scholar] [CrossRef]
- Fichtenbaum, N.; Brown, D.; McCarthy, L.; Keller, S.; Speck, J.S.; Mishra, U.K. Impact of $\hbox {CF}_{4} $ Plasma Treatment on GaN. IEEE Electron Device Lett. 2007, 28, 781–783. [Google Scholar] [CrossRef]
Parameter | Value and unit |
---|---|
Device length | LD = 19 µm |
Device width | WD= 50 µm |
Device height | HD= 3.4 µm |
Polarization charge | = 2.8 × 1012 cm−2 |
SiN interface positive charge | = 1.4 × 1012 cm−2 |
SiN height | HSiN = 80 nm |
LCCT length | LT = 0 to 10 μm |
LCCT depth | DT = 0 to 80 nm |
Gate length | LG = 2 μm |
Gate height | LW = 90 nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Z.; Wang, S.; Chen, C.; Wang, Z.; Yao, Y. Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench. Appl. Sci. 2019, 9, 3054. https://doi.org/10.3390/app9153054
Wang Z, Zhang Z, Wang S, Chen C, Wang Z, Yao Y. Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench. Applied Sciences. 2019; 9(15):3054. https://doi.org/10.3390/app9153054
Chicago/Turabian StyleWang, Zeheng, Zhenwei Zhang, Shengji Wang, Chao Chen, Zirui Wang, and Yuanzhe Yao. 2019. "Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench" Applied Sciences 9, no. 15: 3054. https://doi.org/10.3390/app9153054
APA StyleWang, Z., Zhang, Z., Wang, S., Chen, C., Wang, Z., & Yao, Y. (2019). Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench. Applied Sciences, 9(15), 3054. https://doi.org/10.3390/app9153054