Circular Economy and E-Waste: An Opportunity from RFID TAGs
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Prevention in the production of waste;
- Reuse;
- Recycling;
- Disposal.
3.1. Prevention
3.2. Reuse
- The time needed for different tag writing operations may differ, depending on technology and data payload to be programmed. For this analysis, the example codes of Figure 7 have been considered, with five commands and seven commands for a simple write operation and secured writing operation, respectively, and assigning a uniform computational cost per each operation.
- Prices associated with each type of passive tag may vary, depending on the producer and requested quantity. Best case, lower costs for standard, self-adhesive tags and pet flexible, transparent tags–as reported in Table 6—have been considered.
- Not all the tag programmers are compatible with password read/write operations. However, the initial investment for a proper programmer has not been considered, since it is strongly dependent on many other factors that are linked to the needs of the company.
3.3. Recycle
3.4. Disposal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mcfarlane, D.; Sheffi, Y. The Impact of Automatic Identification on Supply Chain Operations. Int. J. Logist. Manag. 2003, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Steinhilper, R.; Freiberger, S.; Kübler, F.; Böhner, J. RFID Integrated Adaption of Manufacturing Execution Systems for Energy Efficient Production. In Re-Engineering Manufacturing for Sustainability; Chapter 20; Springer: Singapore, 2013; pp. 123–128. [Google Scholar]
- Li, S.; Visich, J.K. Radio Frequency Identification: Supply Chain Impact and Implementation Challenges. Int. J. Integr. Supply Manag. 2006, 2, 407–424. [Google Scholar] [CrossRef]
- Kelepouris, T.; Pramatari, K.; Doukidis, G. RFID-enabled traceability in the food supply chain. Ind. Manag. Data Syst. 2007, 107, 183–200. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, C.; Huang, P. Supply chain management with lean production and RFID application: A case study. Expert Syst. Appl. 2013, 40, 3389–3397. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Lefebvre, L.; Bendavid, Y.; Lefebvre, É. Exploring the impact of RFID technology and the EPC network on mobile B2B eCommerce: A case study in the retail industry. Int. J. Prod. Econ. 2008, 112, 614–629. [Google Scholar] [CrossRef]
- Sferrazza, A. Innovativi Dispositivi Tecnologici per una Maggiore Informazione nel Settore Agroalimentare: Uno Studio al Salone del Gusto. Master’s Thesis, Facoltà Di Economia, Corso di Laurea in Economia e Direzione Delle Imprese, Università Degli Studi Di Torino, Torino, Italy, 2010; pp. 100–110. [Google Scholar]
- Talone, P.; Russo, G. Rfid: Tecnologia e Applicazioni. Fondamenti delle Tecniche e Cenni Sulle Applicazioni di una Tecnologia Silenziosamente Pervasiva; Fondazione Ugo Bordoni: Roma, Italy, 2008. [Google Scholar]
- Kim, T.; Glock, C. On the use of RFID in the management of reusable containers in closed-loop supply chains under stochastic container return quantities. Transp. Res. Part E Logist. Transp. Rev. 2014, 64, 12–27. [Google Scholar] [CrossRef]
- Leoni, A.; Cucchiella, F.; Mastrodicasa, L.; Stornelli, V. A 3D Printable Apparatus for the Industrial Programming of NFC/RFID TAGs. In Proceedings of the 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia; 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Weber, G.; Cabras, I.; Calaf-Forn, M.; Puig-Ventosa, I.; D’Alisa, G. Promoting Waste Degrowth and Environmental Justice at a Local Level: The Case of Unit-Pricing Schemes in Spain. Ecol. Econ. 2019, 156, 306–317. [Google Scholar] [CrossRef]
- Favot, M.; Grassetti, L. E-waste collection in Italy: Results from an exploratory analysis. Waste Manag. 2017, 67, 222–231. [Google Scholar] [CrossRef]
- Uricchio, V. Le Nuove Frontiere della Tecnologia per la Tracciabilità dei Rifiuti e il Controllo dei Traffici Illeciti alla luce delle Innovazioni Normative Europee, 1st ed.; Cacucci: Bari, Italy, 2009; pp. 145–180. [Google Scholar]
- Bilitewski, B. Pay-as-you-throw—A tool for urban waste management. Waste Manag. 2008, 28, 2759. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.; Tornese, F. Designing Pay-As-You-Throw schemes in municipal waste management services: A holistic approach. Waste Manag. 2015, 44, 188–195. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Cucchiella, F.; D’Adamo, I.; Li, J.; Rosa, P.; Terzi, S.; Wei, G.; Zeng, X. Modelling the Correlations of E-Waste Quantity with Economic Increase. In Science of The Total Environment; Elsevier: Amsterdam, The Netherlands; Volume 613–614, pp. 46–53. [CrossRef]
- Thomas, V.M. Environmental Implications of RFID. In Proceedings of the 2008 IEEE International Symposium on Electronics and the Environment, San Francisco, CA, USA, 19–22 May 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Rosa, P.; Terzi, S. Automotive printed circuit boards recycling: An economic analysis. J. Clean. Prod. 2016, 121, 130–141. [Google Scholar] [CrossRef]
- Bose, I.; Yan, S. The Green Potential of RFID Projects: A Case-Based Analysis. IT Prof. 2011, 13, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Schindler, S.; Rebecca, H.; Schmalbein, N.; Steltenkamp, V.; Cave, J.; Wens, B.; Anhalt, A. SMART TRASH: Study on RFID Tags and the Recycling Industry; European Commission. 2012. Available online: https://www.rand.org/pubs/technical_reports/TR1283.html (accessed on 28 June 2019).
- Global E-Waste Volume Hits New Peak in 2014: UNU Report—United Nations University. Available online: http://unu.edu/news/news/ewaste-2014-unu-report.html (accessed on 9 August 2019).
- Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. J. Clean. Prod. 2019, 214, 550–558. [Google Scholar] [CrossRef]
- Extended Producer Responsibility—OECD. Available online: https://www.oecd.org/env/tools-evaluation/extendedproducerresponsibility.htm (accessed on 28 June 2019).
- Luppi, B.; Parisi, F.; Rajagopalan, S. The Rise and Fall of the Polluter-Pays Principle in Developing Countries. SSRN Electron. J. 2012, 32, 135–144. [Google Scholar]
- EUR-Lex-32008L0050-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 28 June 2019).
- Efficienza delle Risorse ed Economia Circolare | Note Tematiche Sull’Unione Europea | Parlamento Europeo. Available online: http://www.europarl.europa.eu/factsheets/it/sheet/76/efficienza-delle-risorse-ed-economia-circolare (accessed on 28 June 2019).
- EUR-Lex-32012L0019-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019 (accessed on 29 June 2019).
- EUR-Lex-32012L0018-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012L0018 (accessed on 29 June 2019).
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-04-14&atto.codiceRedazionale=006G0171 (accessed on 28 June 2019).
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/eli/id/2010/12/10/010G0235/sg (accessed on 28 June 2019).
- Sesta, M. Sicurezza dei Prodotti Alimentari e la Responsabilità Civile nell’Unione Europea e negli Stati Uniti: Tecniche a Confronto. Ph.D. Thesis, Università di Bologna, Bologna, Italy, 2013. [Google Scholar]
- Bergner, D.M. The Electronic Waste Recycling Act of 2003: California’s Response to the Electronic Waste Crisis. Marq. L. Rev. 2004, 88, 377–389. [Google Scholar]
- Lee, J.; Song, H.; Yoo, J. Present status of the recycling of waste electrical and electronic equipment in Korea. Resour. Conserv. Recycl. 2007, 50, 380–397. [Google Scholar] [CrossRef]
- Rubio, S.; Ramos, T.; Leitão, M.; Barbosa-Povoa, A. Effectiveness of extended producer responsibility policies implementation: The case of Portuguese and Spanish packaging waste systems. J. Clean. Prod. 2019, 210, 217–230. [Google Scholar] [CrossRef]
- Circular Economy—UK, USA, Europe, Asia & South America—The Ellen MacArthur Foundation. Available online: https://www.ellenmacarthurfoundation.org/ (accessed on 28 June 2019).
- Cucchiella, F.I.; D’Adamo, S.C.; Koh, L.; Rosa, P. A Profitability Assessment of European Recycling Processes Treating Printed Circuit Boards from Waste Electrical and Electronic Equipments. Rev. Renew. Sustain. Energy Rev. 2016, 64, 749–760. [Google Scholar] [CrossRef]
- Aidonis, D.; Achillas, C.; Folinas, D.; Keramydas, C.; Tsolakis, N. Decision Support Model for Evaluating Alternative Waste Electrical and Electronic Equipment Management Schemes—A Case Study. Sustainability 2019, 11, 3364. [Google Scholar] [CrossRef]
- De Oliveira Neto, G.; de Jesus Cardoso Correia, A.; Schroeder, A. Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland. Resour. Conserv. Recycl. 2017, 127, 42–55. [Google Scholar] [CrossRef]
- Riddle, A. RFID for All [review of “RFID Technology and Applications” by Miles, S.B.; Sarma, S.E.; Williams, J.R.; 2008]. IEEE Microw. Mag. 2008, 9, 176. [Google Scholar] [CrossRef]
- Tuttle, J.R. Traditional and Emerging Technologies and Applications in the Radio Frequency Identification (Rfid) Industry. In Proceedings of the 1997 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Technical Papers, Denver, CO, USA, 10 June 1997; pp. 5–8. [Google Scholar]
- RFID—TAG Application. Available online: http://www.tagapplication.it/rfid/ (accessed on 28 June 2019).
- Pantoli, L.; Leoni, A.; Stornelli, V.; Ferri, G. Energy harvester for remote sensors systems. In Proceedings of the 2016 International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 13–15 July 2016. [Google Scholar] [CrossRef]
- Leoni, A.; Pantoli, L.; Stornelli, V.; Ferri, G.; Solic, P.; Russo, M. A Combined 90/900 MHz IC Architecture for Smart Tag Application. J. Commun. Softw. Syst. 2018, 14, 27–32. [Google Scholar] [CrossRef]
- Safraou, A.; Bacot, P.; Dudret, S.; Bourdel, E.; Granado, B. RF Harvesting Circuit for Batteryless Connected Sensor. In Proceedings of the Eurosensors 2017, Paris, France, 3–6 September 2017; p. 583. [Google Scholar] [CrossRef]
- Yang, L.; Rida, A.; Vyas, R.; Tentzeris, M.M. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 2007, 55, 2894–2901. [Google Scholar] [CrossRef]
- Steudel, S.; Myny, K.; Arkhipov, V.; Deibel, C.; Vusser, S.D.; Genoe, J.; Heremans, P. 50MHz rectifier based on an organic diode. Nat. Mater. 2005, 4, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Steudel, S.; Vusser, S.D.; Myny, K.; Lenes, M.; Genoe, J.; Heremans, P. Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. J. Appl. Phys. 2006, 99, 114519. [Google Scholar] [CrossRef]
- Subramanian, V.; Frechet, J.M.J.; Chang, P.C.; Huang, D.C.; Lee, J.B.; Molesa, S.E.; Murphy, A.R.; Redinger, D.R.; Volkman, S.K. Progress towar development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 2005, 93, 1330–1338. [Google Scholar] [CrossRef]
- Tecnologia | Smart Res. Available online: https://www.smartres.eu/tecnologia/ (accessed on 28 June 2019).
- Thi Thu Nguyen, H.; Hung, R.-J.; Lee, C.-H.; Thi Thu Nguyen, H. Determinants of Residents’ E-Waste Recycling Behavioral Intention: A Case Study from Vietnam. Sustainability 2019, 11, 164. [Google Scholar] [CrossRef]
- Shevchenko, T.; Laitala, K.; Danko, Y. Understanding Consumer E-Waste Recycling Behavior: Introducing a New Economic Incentive to Increase the Collection Rates. Sustainability 2019, 11, 2656. [Google Scholar] [CrossRef]
- Isernia, R.; Passaro, R.; Quinto, I.; Thomas, A. The Reverse Supply Chain of the E-Waste Management Processes in a Circular Economy Framework: Evidence from Italy. Sustainability 2019, 11, 2430. [Google Scholar] [CrossRef]
- Cordova-Pizarro, D.; Aguilar-Barajas, I.; Romero, D.; Rodriguez, C.A. Circular Economy in the Electronic Products Sector: Material Flow Analysis and Economic Impact of Cellphone E-Waste in Mexico. Sustainability 2019, 11, 1361. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Sarkis, J.; Zhu, Q. At the Nexus of Blockchain Technology, the Circular Economy, and Product Deletion. Appl. Sci. 2019, 9, 1712. [Google Scholar] [CrossRef]
- Yang, S.; MR, A.; Kaminski, J.; Pepin, H. Opportunities for Industry 4.0 to Support Remanufacturing. Appl. Sci. 2018, 8, 1177. [Google Scholar] [CrossRef]
- Schindler, R. Smart Trash; RAND Corporation: Santa Monica, CA, USA, 2012; pp. 20–22. [Google Scholar]
- White, R.; Nelken, P. Transnational Environmental Crime; Taylor and Francis: Florence, Italy, 2013; pp. 19–110. [Google Scholar]
- Bisschop, L. Governance of the Illegal Trade in e-Waste and Tropical Timber: Case Studies on Transnational Environmental Crime Lieselot Bisschop Green Criminology Series; Routledge: Ashgate, UK, 2016; ISBN 147241540X. [Google Scholar]
Date | Authors | Title | Publisher | Keywords |
---|---|---|---|---|
1997 | Tuttle J.R. | Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry. | IEEE Conference | RFID |
2003 | Mcfarlane, D.; Sheffi, Y. | The Impact of Automatic Identification on Supply Chain Operations. | International Journal of Logistics Management | RFID and supply chain |
2005 | S. Steudel, K. et al. | 50MHz rectifier based on an organic diode. | Nature Materials | RFID |
Subramanian V. et al. | Progress towar development of all-printed RFID tags: Materials, processes, and devices. | Proceedings of the IEEE | RFID tags | |
2006 | Suhong, Li; Visich J.K. | Radio Frequency Identification: Supply Chain Impact and Implementation Challenges. | International Journal of Integrated Supply Management | RFID and supply chain |
2007 | Kelepouris T. et al. | RFID-enabled traceability in the food supply chain | Industrial Management & Data Systems | RFID and supply chain |
Lee, J. et al. | Present status of the recycling of waste electrical and electronic equipment in Korea. | Resources, Conservation and Recycling | WEEE and EPR | |
L. Yang, A. et al. | RFID tag and RF structures on a paper substrate using inkjet-printing technology | IEEE Trans. on Microwave Theory and Techniques | RFID tags | |
2008 | Fosso Wamba, S. et al. | Exploring the impact of RFID technology and the EPC network on mobile B2B eCommerce: A case study in the retail industry. | International Journal of Production Economics | RFID and supply chain and mobile commerce |
Riddle, A. | RFID for All [review of “RFID Technology and Applications” by S.B. Miles, S.E. Sarma, and J.R. Williams; 2008]. | IEEE Microwave Magazine | RFID | |
Thomas V.M. | Environmental Implications of RFID. | Proc. IEEE Int’l Symp. Electronics and the Environment | RFID and e-waste | |
2011 | Bose, I.; Yan, S. | The Green Potential of RFID Projects: A Case-Based Analysis. | IT Professional IEEE | RFID and e-waste |
2012 | Luppi, B. et al. | The Rise and Fall of the Polluter-Pays Principle in Developing Countries. | SSRN Electronic Journal | E-waste and EPR |
2013 | Chen, J. et al. | Supply chain management with lean production and RFID application: A case study. | Expert Systems with Applications | RFID and supply chain |
2014 | Kim, T.; Glock, C. | On the use of RFID in the management of reusable containers in closed-loop supply chains under stochastic container return quantities. | Science Direct Journal | RFID and supply chain |
2015 | Elia, V. et al. | Designing Pay-As-You-Throw schemes in municipal waste management services: A holistic approach. | Waste Management Journal | Pay as you throw |
2016 | Pantoli L. et al. | Energy harvester for remote sensors systems. | Int. Multidisciplinary Conference on Computer and Energy Science (SpliTech) | RFID tags and power supply |
2017 | De Oliveira Neto, G. et all | Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland. | Resources, Conservation and Recycling Journal | E-waste and recycling |
Favot, M.; Grassetti, L. | E-waste collection in Italy: Results from an exploratory analysis. | Waste Management | E-waste | |
Leoni, L. et al. | 90/900 MHz IC architecture for autonomous systems. | Int. Multidisciplinary Conference on Computer and Energy Science (SpliTech) | RFID and power supply | |
Safraou A. et al. | RF Harvesting Circuit for Batteryless Connected Sensor. | Eurosensors Conference | RFID and IOT and power supply | |
2018 | A. Leoni et al. | A Combined 90/900 MHz IC Architecture for Smart Tag Application. | Journal of Communications Software and Systems | RFID and power supply |
Stornelli, V. et al. | A Multi-Source Energy Harvesting Sensory Glove Electronic Architecture. | Int. Conference on Smart and Sustainable Technologies (SpliTech) | RFID and power supply | |
Yang, S. et al. | Opportunities for Industry 4.0 to Support Remanufacturing. | MPDI Appl. Sci. Journal | Circular economy | |
2019 | Aidonis, D. | Decision Support Model for Evaluating Alternative Waste Electrical and Electronic Equipment Management Schemes | MPDI Sustainability Journal | WEEE |
Cordova-Pizarro, D. et al. | Circular Economy in the Electronic Products Sector: Material Flow Analysis and Economic Impact of Cellphone E-Waste in Mexico. | MPDI Sustainability Journal | E-waste and Circular economy | |
Isernia, R. et al. | The Reverse Supply Chain of the E-Waste Management Processes in a Circular Economy Framework: Evidence from Italy. | MPDI Sustainability Journal | E-waste and supply chain and circular economy | |
Kouhizadeh, M. et al. | At the Nexus of Blockchain Technology, the Circular Economy, and Product Deletion. | MPDI Appl. Sci. Journal | Circular economy | |
Leal Filho, W. et al. | An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe | Journal of Cleaner Production | Waste and ERP and EU | |
Rubio, S. et al. | Effectiveness of extended producer responsibility policies implementation: The case of Portuguese and Spanish packaging waste systems. | Journal of Cleaner Production | ERP and EU | |
Shevchenko, T. et al. | Understanding Consumer E-Waste Recycling Behavior: Introducing a New Economic Incentive to Increase the Collection Rates. | MPDI Sustainability Journal | E-waste and recycling | |
Thi Thu Nguyen, H. et al. | Determinants of Residents’ E-Waste Recycling Behavioral Intention: A Case Study from Vietnam. | MPDI Sustainability Journal. | E-Waste and recycling | |
Weber, G. et al. | Promoting Waste Degrowth and Environmental Justice at a Local Level: The Case of Unit-Pricing Schemes in Spain. | Ecological Economics | Waste and political ecology |
“ | Rechargeable | Energy Density [Wh/L] | Cost [Wh/$] | Disposal Classification | Proper Disposal |
---|---|---|---|---|---|
Alkaline | No | 250–434 | 0.47 | Non-Hazardous | Trash (normal municipal waste) |
Carbon Zinc | No | 92 | 3.02 | Non-Hazardous | Trash (normal municipal waste) |
Lithium, Li-Ion | Yes | 560 | 2.68 | Hazardous | Recycle |
Nickel-cadmium | Yes | 100 | 3.22 | Hazardous | Recycle or Household Hazardous Waste Collection Site |
Nickel Metal Hydride | Yes | 401 | 3.22 | Non-hazardous waste | Recycle or place in the trash (normal municipal waste) |
Mercury Oxide | No | 300–500 | Hazardous | Household Hazardous Waste Collection Site | |
Lithium Thionyl Chloride | No | 1200 | 5.1 | Hazardous | Recycle |
EPC Class | Standard | Frequency | Power Supply | Memory |
---|---|---|---|---|
Class 0 Gen 1 | 900 MHz Class 0—RF Identification—Tag Specification | UHF | Passive | Read-Only |
Class 1 Gen 1 | 13.56 MHz ISM Band Class 1 | HF-UHF | Passive | WORM (Write once, read many) |
RF Identification Tag Interface Specification 860 MHz–930 MHz Class 1 RF Identification Tag RF andLogical Communication Iterface Specification | ||||
Class 1 Gen 2 | EPCglobal Tag Data Standards Version 1.3 Class 1 Gen2 UHF Air Interface Protocol Standard Version 1.0.9 Class 1 Gen 2 UHF RFID Conformance Requirements Specification v.1.0.2 | UHF | Passive | WORM (Write once, read many) |
Class 2 | EPCglobal Hardware Action Group (HAG) | UHF | Passive Semi-Passive Active | Rewritable |
Type | Capacity | Chemistry | Costs 1 [$/unit] | Cycle Durability |
---|---|---|---|---|
Non-rechargeable | 40–50 mAh | Alkaline Manganese Dioxide Lithium Lithium Manganese Dioxide Lithium Poly-Carbon Monofluoride Silver Oxide | 0.43–2.55 | 1 |
Rechargeable | 45/50 mAh | Lithium Manganese Nickel Metal Hydride | 2.52–9.49 | 1200–2000 |
Substrate Type | Technology | Size | Cost 1 [$/Unit] |
---|---|---|---|
Self-adhesive paper | Alien H3 | 100 × 25 mm | 0.05–0.06 |
Pet flexible, transparent | Alien H3 | 73 × 23 mm | 0.09–0.12 |
Waterproof self-adhesive | Alien H3/H4 | 100 × 25 mm | 0.10–0.15 |
Textile washable | Alien H3 | 85 × 27 mm | 0.02–0.15 |
PET flexible, anti-metal | Monza MR6-P | 40 × 25mm | 0.25–0.45 |
Flexible silicone | Alien H3 | 55 × 12 × 2.5 mm | 0.35–0.7 |
Component | Material | Carbon Footprind (Values Rounded) | Market Value (Ideal) | Market Value (Feasible) |
---|---|---|---|---|
Face material | PP | 3.50 kgCo2/kg | 1.4 €/kg | 1.4 €/kg |
Paper | 1.35 kgCo2/kg | 0.445 €/kg | 0 €/kg | |
Adhesive | Acrylate | 3.34 kgCO2/kg | 2.5 €/kg | 0 €/kg |
IC | Silicon | 85.41 kgCO2/kg | 250 €/kg | 0 €/kg |
IC bumps | Gold | 18,722.00 kgCO2/kg | 41,540 €/kg | 41,540 €/kg |
ACP | Epoxy-based material | 3.34 kgCO2/kg | 2.5 €/kg | 2.5 €/kg |
ACP Metal | Nickel | 5.94 kgCO2/kg | 13.817 €/kg | 24.8 €/kg |
Adhesive | Polyurethane | 3.34 kgCO2/kg | 0.99 €/kg | 0.99 €/kg |
Aerial | Copper Aluminium Silver (in print) Bonding agent (in print | 3.97 kgCO2/kg 14.90 kgCO2/kg 155.48 kgCO2/kg 3.34 kgCO2/kg | 5.618 €/kg 1.533 €/kg 849 €/kg 2.5 €/kg | 8.935 €/kg 2.693 €/kg 849 €/kg 2.5 €/kg |
Substrate | PET | 3.18 kgCO2/kg | 0.86 €/kg | 0.86 €/kg |
Adhesive | Acrylate | 3.34 kgCO2/kg | 2.5 €/kg | 0 €/kg |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condemi, A.; Cucchiella, F.; Schettini, D. Circular Economy and E-Waste: An Opportunity from RFID TAGs. Appl. Sci. 2019, 9, 3422. https://doi.org/10.3390/app9163422
Condemi A, Cucchiella F, Schettini D. Circular Economy and E-Waste: An Opportunity from RFID TAGs. Applied Sciences. 2019; 9(16):3422. https://doi.org/10.3390/app9163422
Chicago/Turabian StyleCondemi, Alessia, Federica Cucchiella, and Domenico Schettini. 2019. "Circular Economy and E-Waste: An Opportunity from RFID TAGs" Applied Sciences 9, no. 16: 3422. https://doi.org/10.3390/app9163422
APA StyleCondemi, A., Cucchiella, F., & Schettini, D. (2019). Circular Economy and E-Waste: An Opportunity from RFID TAGs. Applied Sciences, 9(16), 3422. https://doi.org/10.3390/app9163422