The Evolution of Interfacial Microstructure and Fracture Behavior of Short Carbon Fiber Reinforced 2024 Al Composites at High Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The dislocation accumulation is formed in the aluminum matrix due to the thermal expansion mismatch between carbon fiber and the aluminum matrix. With the testing temperature increasing, the size of interfacial product Al4C3 and precipitates Al2Cu becomes larger, and the segregation of Al2Cu is found coarsening around Al4C3.
- (2)
- From the result of nanoindentation, carbon fiber improves the hardness and modulus of the adjacent aluminum matrix. The indentation on the aluminum matrix nearest carbon fiber possesses the highest modulus (93.53 GPa) and hardness (2.51 GPa).
- (3)
- The addition of SCFs gives rise to the sharp decrease in the fracture strain of SCFs/2024 Al composites. The tensile strengths of the composites first increase and then decrease with the increasing volume fraction of SCFs. At room temperature, 423 and 523 K, the highest yield strengths are obtained by 4 vol. % SCFs/2024 Al, which are 19.6%, 45.6%, and 36.7% higher than those of 2024 Al, respectively.
- (4)
- The fracture surface of the SCFs/2024 Al composites at room temperature is mainly characterized by the sheared fracture of carbon fiber, due to the strong interfacial bonding between carbon fiber and the aluminum matrix caused by the residual stress generated at the interface during the cooling process. With the temperature increasing, the interfacial bonding is weakened because of the decreasing residual stress and the coarsening of interfacial product Al4C3 and Al2Cu segregation. Therefore, the interface debonding and fiber pulled-out become predominant fracture morphologies for the fracture surface obtained at 523 K.
Author Contributions
Funding
Conflicts of Interest
References
- Belkacem, L.; Abdelbaki, N.; Otegui, J.L.; Gaceb, M.; Bettayeb, M. Using a supperficially treated 2024 aluminum alloy drill pipe to delay failure during dynamic loading. Eng. Fail. Anal. 2019, 104, 261–273. [Google Scholar] [CrossRef]
- Chandler, R.B.; Jellison, M.J.; Payne, M.L.; Shepard, J.S. Advanced and emerging drillstring technologies overcome operational challenges. World Oil 2006, 227, 23–24. [Google Scholar]
- Damavandi, E.; Nourouzi, S.; Rabiee, S.M.; Jamaati, R. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 931–940. [Google Scholar] [CrossRef]
- El-Sayed Seleman, M.M.; Ahmed, M.M.Z.; Ataya, S. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites. J. Mater. Sci. Technol. 2018, 34, 1580–1591. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, W.; Zheng, X.; Zhao, Y.; Lou, Z.; Zhang, W. Developing high performance mechanical properties at elevated temperature in squeeze cast Al-Cu-Mn-Fe-Ni alloys. Mater. Charact. 2019, 150, 128–137. [Google Scholar] [CrossRef]
- Su, M.; Young, B. Material properties of normal and high strength aluminium alloys at elevated temperatures. Thin-Walled Struct. 2019, 137, 463–471. [Google Scholar] [CrossRef]
- Huang, Y.; Ouyang, Q.; Zhang, D.; Zhu, J.; Li, R.; Yu, H. Carbon Materials Reinforced Aluminum Composites: A Review. Acta Metall. Sin. 2014, 27, 775–786. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Tang, Y.; Shen, B.; Hu, W. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear 2009, 266, 733–738. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei Akbari, M.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S.; et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A: Appl. Sci. Manuf. 2017, 92, 70–96. [Google Scholar] [CrossRef]
- Shin, S.E.; Ko, Y.J.; Bae, D.H. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos. Part B Eng. 2016, 106, 66–73. [Google Scholar] [CrossRef]
- Carvalho, O.; Buciumeanu, M.; Madeira, S.; Soares, D.; Silva, F.S.; Miranda, G. Optimization of AlSi–CNTs functionally graded material composites for engine piston rings. Mater. Des. 2015, 80, 163–173. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, D.; Wu, G.; Li, B.; Li, P. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite. Mater. Sci. Eng. A 2008, 497, 31–36. [Google Scholar] [CrossRef]
- Alhashmy, H.A.; Nganbe, M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater. Des. 2015, 67, 154–158. [Google Scholar] [CrossRef]
- Liu, T.; He, X.; Liu, Q.; Zhang, L.; Wang, L.; Kang, Q.; Qu, X. Fabrication of Short Graphite Fiber Preforms for Liquid Metal Infiltration. J. Mater. Eng. Perform. 2012, 22, 1649–1654. [Google Scholar] [CrossRef]
- Kaptay, G.; BÁrczy, T. On the asymmetrical dependence of the threshold pressure of infiltration on the wettability of the porous solid by the infiltrating liquid. J. Mater. Sci. 2005, 40, 2531–2535. [Google Scholar] [CrossRef]
- Wang, W.G.; Xiao, B.L.; Ma, Z.Y. Evolution of interfacial nanostructures and stress states in Mg matrix composites reinforced with coated continuous carbon fibers. Compos. Sci. Technol. 2012, 72, 152–158. [Google Scholar] [CrossRef]
- Yang, J.; Chung, D.D.L. Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure. J. Mater. Sci. 1989, 24, 3605–3612. [Google Scholar] [CrossRef]
- Even, C.; Arvieu, C.; Quenisset, J.M. Powder route processing of carbon fibres reinforced titanium matrix composites. Compos. Sci. Technol. 2008, 68, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Harrigan, W.C. Commercial processing of metal matrix composites. Mater. Sci. Eng.: A 1998, 244, 75–79. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CPC Press: Boca Raton, FL, USA, 2007; Volume 2. [Google Scholar]
- Raghukandan, K.; Hokamoto, K.; Lee, J.S.; Chiba, A.; Pai, B.C. An investigation on underwater shock consolidated carbon fiber reinforced Al composites. J. Mater. Process. Technol. 2003, 134, 329–337. [Google Scholar] [CrossRef]
- Guo, B.; Chen, B.; Zhang, X.; Cen, X.; Wang, X.; Song, M.; Ni, S.; Yi, J.; Shen, T.; Du, Y. Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 2018, 135, 224–235. [Google Scholar] [CrossRef]
- Kwon, H.; Lee, G.-G.; Kim, S.-G.; Lee, B.-W.; Seo, W.-C.; Leparoux, M. Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Mater. Sci. Eng. A 2015, 632, 72–77. [Google Scholar] [CrossRef]
- Kwon, H.; Takamichi, M.; Kawasaki, A.; Leparoux, M. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater. Chem. Phys. 2013, 138, 787–793. [Google Scholar] [CrossRef]
- Yan, S.J.; Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z.; Lin, Z.M. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater. Sci. Eng. A 2014, 612, 440–444. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Seong, H.G.; Lopez, H.F.; Robertson, D.P.; Rohatgi, P.K. Interface structure in carbon and graphite fiber reinforced 2014 aluminum alloy processed with active fiber cooling. Mater. Sci. Eng. A 2008, 487, 201–209. [Google Scholar] [CrossRef]
- Daoud, A. Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater. Sci. Eng. A 2005, 391, 114–120. [Google Scholar] [CrossRef]
- Li, H.; Kang, J.; He, C.; Zhao, N.; Liang, C.; Li, B. Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Mater. Sci. Eng. A 2013, 577, 120–124. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 2013, 62, 35–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, G. Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites. Rare Met. 2010, 29, 102–107. [Google Scholar] [CrossRef]
- Landry, K.; Kalogeropoulou, S.; Eustathopoulos, N. Wettability of carbon by aluminum and aluminum alloys. Mater. Sci. Eng. A 1998, 254, 99–111. [Google Scholar] [CrossRef]
- Zhou, W.; Yamaguchi, T.; Kikuchi, K.; Nomura, N.; Kawasaki, A. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 2017, 125, 369–376. [Google Scholar] [CrossRef]
- Ci, L.; Ryu, Z.; Jin-Phillipp, N.Y.; Rühle, M. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 2006, 54, 5367–5375. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, C.; Xiong, Y.; Xie, D.; Zhang, X. Effects of sintering temperature on interface and mechanical properties of short carbon fiber reinforced Nb/Nb5Si3 composites fabricated by spark plasma sintering. Intermetallics 2019, 108, 66–71. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Liu, B.; Meng, Q.; Ma, S.; Dai, W. Reduced Graphene Oxide Reinforced 7075 Al Matrix Composites: Powder Synthesis and Mechanical Properties. Metals 2017, 7, 499. [Google Scholar] [CrossRef]
- Tsui, T.Y.; Oliver, W.; Pharr, G.M. Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part I. Experimental Studies in an Aluminum Alloy; Cambridge University Press: Cambridge, UK, 1996; Volume 11, pp. 752–759. [Google Scholar]
- Lan, X.; Feng, S.; Huang, Q.; Zhou, T. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerosp. Sci. Technol. 2019, 87, 37–47. [Google Scholar] [CrossRef]
- Meng, Q.N.; Wen, M.; Hu, C.Q.; Wang, S.M.; Zhang, K.; Lian, J.S.; Zheng, W.T. Influence of the residual stress on the nanoindentation-evaluated hardness for zirconiumnitride films. Surf. Coat. Technol. 2012, 206, 3250–3257. [Google Scholar] [CrossRef]
- Meng, Q.N.; Wen, M.; Mao, F.; Nedfors, N.; Jansson, U.; Zheng, W.T. Deposition and characterization of reactive magnetron sputtered zirconium carbide films. Surf. Coat. Technol. 2013, 232, 876–883. [Google Scholar] [CrossRef]
- Li, S.-H.; Chao, C.-G. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall. Mater. Trans. A 2004, 35, 2153–2160. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, F.; Zhao, Q.; Wang, H.; Jiang, Q. Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites. Mater. Charact. 2017, 125, 7–12. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Sun, Z.; Li, M. Effect of fiber type on mechanical properties of short carbon fiber reinforced B4C composites. Ceram. Int. 2009, 35, 1461–1466. [Google Scholar]
Samples | ROOM Temperature | 423 K | 523 K | ||||||
---|---|---|---|---|---|---|---|---|---|
YS/MPa | UTS/MPa | /% | YS/MPa | UTS/MPa | /% | YS/MPa | UTS/MPa | /% | |
2024 Al | 32 ± 11 | 414 ± 1 | 11.8 ± 0.6 | 219 ± 4 | 350 ± 5 | 11.6 ± 0.2 | 188 ± 10 | 246 ± 2 | 5.8 ± 0.2 |
2 vol. % | 368 ± 5 | 423 ± 6 | 5.9 ± 0.7 | 291 ± 3 | 384 ± 10 | 5.4 ± 0.1 | 252 ± 1 | 286 ± 2 | 4 ± 0.2 |
4 vol. % | 384 ± 4 | 433 ± 2 | 5.2 ± 0.4 | 319 ± 5 | 398 ± 6 | 5 ± 0.2 | 257 ± 5 | 291 ± 4 | 3.9 ± 0.6 |
6 vol. % | 357 ± 11 | 380 ± 9 | 4.3 ± 0.3 | 251 ± 6 | 326 ± 7 | 4.7 ± 0.2 | 244 ± 1 | 276 ± 3 | 3.3 ± 0.2 |
8 vol. % | 343 ± 8 | 360 ± 8 | 2.8 ± 0.6 | 248 ± 3 | 283 ± 6 | 3.6 ± 0.1 | 242 ± 2 | 272 ± 4 | 3 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wu, J.; Meng, Q.; Sun, Y.; Wen, M. The Evolution of Interfacial Microstructure and Fracture Behavior of Short Carbon Fiber Reinforced 2024 Al Composites at High Temperature. Appl. Sci. 2019, 9, 3477. https://doi.org/10.3390/app9173477
Zhang C, Wu J, Meng Q, Sun Y, Wen M. The Evolution of Interfacial Microstructure and Fracture Behavior of Short Carbon Fiber Reinforced 2024 Al Composites at High Temperature. Applied Sciences. 2019; 9(17):3477. https://doi.org/10.3390/app9173477
Chicago/Turabian StyleZhang, Chi, Jinhao Wu, Qingnan Meng, Youhong Sun, and Mao Wen. 2019. "The Evolution of Interfacial Microstructure and Fracture Behavior of Short Carbon Fiber Reinforced 2024 Al Composites at High Temperature" Applied Sciences 9, no. 17: 3477. https://doi.org/10.3390/app9173477
APA StyleZhang, C., Wu, J., Meng, Q., Sun, Y., & Wen, M. (2019). The Evolution of Interfacial Microstructure and Fracture Behavior of Short Carbon Fiber Reinforced 2024 Al Composites at High Temperature. Applied Sciences, 9(17), 3477. https://doi.org/10.3390/app9173477