Detection and 3D Visualization of Deformations for High-Rise Buildings in Shenzhen, China from High-Resolution TerraSAR-X Datasets
Abstract
:1. Introduction
2. Study Area and Used Data
3. Methodology
3.1. Permanent Scatterer Interferometry (PSI) Data Processing
3.2. Ortho-Rectification and 3D Visualization
4. Experiments and Results
4.1. Results of the PSI
4.2. Results of 3D Visualization
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Lu, X.Z.; Zhang, Z.J.; Pan, Q.L.; Wang, S.L.; Wang, B.F.; Liu, G.Y.; Zhang, F.L.; Yan, X.P.; Ou, H.P. JGJ8–2007, Code for Deformation Measurement of Building and Structure; China Architecture and Building Press: Beijing, China, 2007; pp. 32–40. [Google Scholar]
- Bru, G.; Herrera, G.; Tomás, R.; Duro, J.; Dela, V.R.; Mulas, J. Control of deformation of buildings affected by subsidence using persistent scatterer interferometry. Struct. Infrastruct. Eng. 2010, 9, 188–200. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Allievi, J. Damage to buildings in large slope rock instabilities monitored with the PSInSAR™ technique. Remote Sens. 2013, 5, 4753–4773. [Google Scholar] [CrossRef]
- Ciampalini, A.; Bardi, F.; Bianchini, S.; Frodella, W.; del Ventisette, C.; Moretti, S.; Casagli, N. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int. J. Appl. Earth Obs. Geoinform. 2014, 33, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yan, L.; Huang, G.; Chen, C.; Wu, Z. Monitoring Building Deformation with InSAR: Experiments and Validation. Sensors 2016, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.W.; Lu, W.W.; Lorne, F.T. A catallactic framework of government land reclamation: The case of Hong Kong and Shenzhen. Habitat Int. 2014, 44, 62–71. [Google Scholar] [CrossRef]
- China Daily. Shenzhen Eyes Land Reclamation to Curb Rising Housing Price. 2016. Available online: http://www.chinadaily.com.cn/china/2016-03/04/content_23738729.htm (accessed on 25 September 2017).
- South China Morning Post. Reclamation Threatens Last of Shenzhen’s Coastline. 2010. Available online: http://www.scmp.com/article/719552/reclamation-threatens-last-shenzhens-coastline (accessed on 25 September 2017).
- IFENG. Subsidence of Buildings in Land Reclamation Area of Shenzhen, with Cracks Found on Pavements. 2010. Available online: http://finance.ifeng.com/city/sz/20100402/2003288.shtml (accessed on 25 September 2017).
- IFENG. Subsidence Due to Metro Construction in Shenzhen, with Cracks Opening up over Buildings. 2010. Available online: http://news.ifeng.com/mainland/detail_2010_05/21/1539325_0.shtml (accessed on 25 September 2017).
- Du, Y.N.; Feng, G.C.; Peng, X.; Li, Z.W. Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010. Appl. Sci. 2017, 7, 466. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Q.; Hu, J. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China. Appl. Sci. 2018, 8, 425. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S. Measurement of precise three-dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry. Remote Sens. Environ. 2017, 192, 228–237. [Google Scholar] [CrossRef]
- Adam, N.; Zhu, X.; Bamler, R. Coherent stacking with TerraSAR-X imagery in urban areas. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–6. [Google Scholar]
- Bianchini, S.; Pratesi, F.; Nolesini, T.; Casagli, N. Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: The Volterra (Italy) case study. Remote Sens. 2015, 7, 4678–4701. [Google Scholar] [CrossRef]
- Gernhardt, S.; Adam, N.; Eineder, M.; Bamler, R. Potential of very high-resolution SAR for persistent scatterer interferometry in urban areas. Ann. GIS 2010, 16, 103–111. [Google Scholar] [CrossRef]
- Gernhardt, S.; Bamler, R. Deformation monitoring of single buildings using meter-resolution SAR data in PSI. ISPRS J. Photogramm. Remote Sens. 2012, 73, 68–79. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.S.; Sun, Y.L.; Hou, J.G.; Liang, J. Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique. Remote Sens. 2014, 6, 3648–3661. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai’s Ocean-Reclaimed Lands through the SBAS-DInSAR Technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef]
- Aobpaet, A.; Cuenca, M.C.; Hooper, A.; Trisirisatayawong, I. InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote Sens. 2013, 34, 2969–2982. [Google Scholar] [CrossRef]
- Castellazzi, P.; Martel, R.; Rivera, A.; Huang, J.; Pavlic, G.; Calderhead, A.I.; Chaussard, E.; Garfias, J.; Salas, J. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour. Res. 2016, 52, 5985–6003. [Google Scholar] [CrossRef]
- Miller, M.M.; Shirzaei, M. Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. J. Geophys. Res. Solid Earth. 2015, 120, 5822–5842. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Feng, G.; Li, Z.; Wang, Q.; Wang, C.; Xie, R. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sens. 2016, 8, 652. [Google Scholar] [CrossRef]
- Du, Y.; Feng, G.; Li, Z.; Peng, X.; Zhu, J.; Ren, Z. Effects of External Digital Elevation Model Inaccuracy on StaMPS-PS Processing: A Case Study in Shenzhen, China. Remote Sens. 2017, 9, 1115. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X.; Li, Z.; Zhang, Z.; Xu, J.; Feng, W.; Wang, C.; Hu, Z.; Tu, W.; Li, H. Resolving surface displacements in Shenzhen of China from time series InSAR. Remote Sens. 2018, 10, 1162. [Google Scholar] [CrossRef]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef] [PubMed]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Jung, H.S.; Lu, Z.; Won, J.S.; Poland, M.P.; Miklius, A. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea volcano, Hawaii. IEEE Geosci. Remote Sens. Lett. 2011, 8, 34–38. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.L.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J. Photogram. Remote Sens. 2011, 66, 146–152. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.L.; Jung, H.S.; Feng, G.C.; Lee, C.W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Zhu, X.X. Very High-Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring—A Sparseand Nonlinear Tour. Ph.D. Thesis, Technische Universität München, München, Germany, 2011. [Google Scholar]
- Montazeri, S. The Fusion of SAR Tomography and Stereo-SAR for 3D Absolute Scatterer Positioning. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Balss, U.; Cong, X.Y.; Brcic, R.; Rexer, M.; Minet, C.; Breit, H.; Eineder, M.; Fritz, T. High precision measurement on the absolute localization accuracy of TerraSAR-X. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 1625–1628. [Google Scholar]
- Montazeri, S.; Gisinger, C.; Eineder, M.; Zhu, X.X. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2613–2632. [Google Scholar] [CrossRef] [Green Version]
- Duque, S.; Breit, H.; Balss, U.; Parizzi, A. Absolute Height Estimation Using a Single TerraSAR-X Staring Spotlight Acquisition. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1735–1739. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.; Zhu, X. Robust Reconstruction of Building Facades for Large Areas Using Spaceborne TomoSAR Point Clouds. IEEE Trans. Geosci. Remote Sens. 2015, 53, 752–769. [Google Scholar] [CrossRef]
- Schmitt, M.; Stilla, U. Compressive sensing-based layover separation in airborne single-pass multi-baseline InSAR data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 313–317. [Google Scholar] [CrossRef]
- Zhu, X.X.; Montazeri, S.; Gisinger, C.; Hanssen, R.F.; Bamler, R. Geodetic SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 18–35. [Google Scholar] [CrossRef]
- Ge, N.; Zhu, X. Bistatic-like Differential SAR Tomography—A Preliminary Framework for Tandem-L. IEEE Trans. Geosci. Remote Sens. 2018. submitted. [Google Scholar]
No. | Master | Slave | B (m) | T (day) | No. | Master | Slave | B (m) | T (day) |
---|---|---|---|---|---|---|---|---|---|
1 | 27 Jul 2009 | 25 Oct 2008 | −155.116 | −275 | 20 | 27 Jul 2009 | 01 Oct 2009 | 114.078 | 66 |
2 | 27 Jul 2009 | 05 Nov 2008 | 147.534 | −264 | 21 | 27 Jul 2009 | 12 Oct 2009 | −139.018 | 77 |
3 | 27 Jul 2009 | 16 Nov 2008 | 19.082 | −253 | 22 | 27 Jul 2009 | 23 Oct 2009 | 1.563 | 88 |
4 | 27 Jul 2009 | 27 Nov 2008 | −94.067 | −242 | 23 | 27 Jul 2009 | 03 Nov 2009 | −103.671 | 99 |
5 | 27 Jul 2009 | 08 Dec 2008 | −96.334 | −231 | 24 | 27 Jul 2009 | 14 Nov 2009 | 46.495 | 110 |
6 | 27 Jul 2009 | 10 Jan 2009 | 65.431 | −198 | 25 | 27 Jul 2009 | 25 Nov 2009 | −78.580 | 121 |
7 | 27 Jul 2009 | 21 Jan 2009 | 0.007 | −187 | 26 | 27 Jul 2009 | 06 Dec 2009 | −92.024 | 132 |
8 | 27 Jul 2009 | 01 Feb 2009 | −77.118 | −176 | 27 | 27 Jul 2009 | 17 Dec 2009 | 9.598 | 143 |
9 | 27 Jul 2009 | 12 Feb 2009 | 152.038 | −165 | 28 | 27 Jul 2009 | 06 Apr 2010 | 16.349 | 253 |
10 | 27 Jul 2009 | 23 Feb 2009 | −132.662 | −154 | 29 | 27 Jul 2009 | 11 Jun 2010 | 15.189 | 319 |
11 | 27 Jul 2009 | 06 Mar 2009 | −50.314 | −143 | 30 | 27 Jul 2009 | 22 Jun 2010 | 78.681 | 330 |
12 | 27 Jul 2009 | 17 Mar 2009 | 51.370 | −132 | 31 | 27 Jul 2009 | 03 Jul 2010 | 138.544 | 341 |
13 | 27 Jul 2009 | 30 Apr 2009 | 51.719 | −88 | 32 | 27 Jul 2009 | 14 Jul 2010 | 78.968 | 352 |
14 | 27 Jul 2009 | 11 May 2009 | 31.028 | −77 | 33 | 27 Jul 2009 | 25 Jul 2010 | 228.633 | 363 |
15 | 27 Jul 2009 | 22 May 2009 | 26.786 | −66 | 34 | 27 Jul 2009 | 16 Aug 2010 | −58.890 | 385 |
16 | 27 Jul 2009 | 02 Jun 2009 | −8.321 | −55 | 35 | 27 Jul 2009 | 07 Sep 2010 | −23.908 | 407 |
17 | 27 Jul 2009 | 24 Jun 2009 | 226.309 | −33 | 36 | 27 Jul 2009 | 18 Sep 2010 | −192.315 | 418 |
18 | 27 Jul 2009 | 05 Jul 2009 | 106.160 | −22 | 37 | 27 Jul 2009 | 29 Sep 2010 | 139.579 | 429 |
19 | 27 Jul 2009 | 16 Jul 2009 | −41.524 | −11 | 38 | 27 Jul 2009 | 10 Oct 2010 | 50.539 | 440 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Cui, H.; Hu, J.; Yao, L. Detection and 3D Visualization of Deformations for High-Rise Buildings in Shenzhen, China from High-Resolution TerraSAR-X Datasets. Appl. Sci. 2019, 9, 3818. https://doi.org/10.3390/app9183818
Wu W, Cui H, Hu J, Yao L. Detection and 3D Visualization of Deformations for High-Rise Buildings in Shenzhen, China from High-Resolution TerraSAR-X Datasets. Applied Sciences. 2019; 9(18):3818. https://doi.org/10.3390/app9183818
Chicago/Turabian StyleWu, Wenqing, Haotian Cui, Jun Hu, and Lina Yao. 2019. "Detection and 3D Visualization of Deformations for High-Rise Buildings in Shenzhen, China from High-Resolution TerraSAR-X Datasets" Applied Sciences 9, no. 18: 3818. https://doi.org/10.3390/app9183818
APA StyleWu, W., Cui, H., Hu, J., & Yao, L. (2019). Detection and 3D Visualization of Deformations for High-Rise Buildings in Shenzhen, China from High-Resolution TerraSAR-X Datasets. Applied Sciences, 9(18), 3818. https://doi.org/10.3390/app9183818