Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm
Abstract
:1. Introduction
2. Method
2.1. IAprioriMR
Algorithm 1. IApriori MR Algorithm |
begin procedure IAprioriMapper(tl, s) |
1: C = {∀P : P = {ij, …, in} ∧ P ⊆ tl ∧ |P| = s} |
// candidate item-sets of size s in tl |
2: ∀P ∈ C, then supp(P)l = 1 |
3: for all P ∈ C do |
4: emit {P, supp(P)l} // emit the { k, v} pair |
5: end for |
end procedure |
// In a grouping procedure values suppm are grouped for each pattern P, producing pairs {P, supp1, supp2, …, suppm} |
begin procedure IAprioriReducer ({P, {supp(P)1, …, supp(P)m}}) |
1: support = 0 |
2: for all supp ∈ {supp(P)1, supp(P)2, …, supp(P)m} do |
3: support += supp |
4: end for |
6: emit {P, support} |
end procedure |
2.2. Algorithm Performance Analysis
3. Study Area and Data
3.1. Study Area
3.2. Data
4. Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Y.; Zhou, L.; Deng, H.; Nan, X. Prediction of landslide displacement using EMD-PSO-ELM with multiple factors. In Proceedings of the International Conference on Digital Home, Guilin, China, 2–6 December 2018; pp. 230–235. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2007, 102, 85–98. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 2014, 11, 1063–1078. [Google Scholar] [CrossRef]
- Saito, H.; Nakayama, D.; Matsuyama, H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology 2009, 109, 108–121. [Google Scholar] [CrossRef]
- De Luca, L.D.; Versace, P. A comprehensive framework for empirical modeling of landslides induced by rainfall: The Generalized FLaIR Model (GFM). Landslides 2017, 14, 1009–1030. [Google Scholar] [CrossRef]
- Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66, 327–343. [Google Scholar] [CrossRef]
- Wang, X.M.; Niu, R.Q. Landslide intelligent prediction using object-oriented method. Soil Dyn. Earthq. Eng. 2010, 30, 1478–1486. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir. China Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K. Factors affecting rainfall-induced flowslides in laboratory flume tests. Géotechnique 2001, 51, 587–599. [Google Scholar] [CrossRef]
- Jin, X.; Zeng, J.; Liu, X. Application of GM (1,1) optimized model in prediction of landslide. In Proceedings of the International Conference on Natural Computation, Haikou, China, 24–27 August 2007; pp. 735–739. [Google Scholar]
- Xie, P.; Zhou, A.; Chai, B. The application of long short-term memory (LSTM) method on displacement prediction of multifactor-induced landslides. IEEE Access 2019, 7, 54305–54311. [Google Scholar] [CrossRef]
- Hossein, S.M.; Masoud, M.; Himan, S. Big data in geohazard; pattern mining and large scale analysis of landslides in Iran. Earth Sci. Inform. 2019, 12, 1–17. [Google Scholar]
- Mandavilli, V.S.; Madamala, N. Detection of natural disaster affected areas using R. Int. J. Inf. Technol. 2018, 10, 123–131. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Hu, X. Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides 2017, 14, 311–322. [Google Scholar] [CrossRef]
- Webb, G.I. Discovering significant patterns. Mach. Learn. 2007, 68, 1–33. [Google Scholar] [CrossRef]
- Liao, C.W.; Perng, Y.H. Data mining for occupational injuries in the Taiwan construction industry. Saf. Sci. 2008, 46, 1091–1102. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, F.B.; Zhang, K. Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the Three Gorges, China. Environ. Earth Sci. 2016, 75, 146–162. [Google Scholar] [CrossRef]
- Wei, L.; Guangming, L.; Yachao, S.; Junlong, L.; You, Z. Optimization and application in medical big document-data of Apriori algorithm based on MapReduce. In Proceedings of the International Conference on Computer Communication and Informatics, Coimbatore, India, 7–9 January 2016; pp. 1–5. [Google Scholar]
- Belhassena, A.; Wang, H. Trajectory big data processing based on frequent activity. Tsinghua Sci. Technol. 2019, 24, 317–332. [Google Scholar] [CrossRef]
- Duaimi, M.G.; Salman, A. Association rules mining for incremental database. Int. J. Adv. Res. Comput. Sci. Technol. 2014, 2, 346–352. [Google Scholar]
- Luna, J.M.; Cano, A.; Pechenizkiy, M.; Ventura, S. Speeding-up association rule mining with inverted index compression. IEEE Trans. Cybern. 2016, 46, 3059–3072. [Google Scholar] [CrossRef]
- Luna, J.M.; Padillo, F.; Pechenizkiy, M. Apriori versions based on mapreduce for mining frequent patterns on big data. IEEE Trans. Cybern. 2018, 48, 2851–2865. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, J.; Liu, C. Dache: A data aware caching for big-data applications using the MapReduce framework. Tsinghua Sci. Technol. 2014, 19, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Q.; Yang, Y.-B.; Chen, G.-P.; Gao, Y.; Zhang, Y. Mapreduce based closed frequent itemset mining with efficient redundancy filtering. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, 10–13 December 2012; pp. 449–453. [Google Scholar]
- Ding, M.; Su, P.; Wang, H. RETRACTED ARTICLE: Distribution characteristics of debris flows and landslides in Three Parallel Rivers Area. Nat. Hazards 2012, 61, 879. [Google Scholar] [CrossRef]
- Yi, S.; Ning, W.; Peng, L. Changes in livestock migration patterns in a Tibetan-style agropastoral system: A study in the three-parallel-rivers region of Yunnan, China. Mt. Res. Dev. 2007, 27, 138–146. [Google Scholar]
- Matsuura, S.; Asano, S.; Okamoto, T. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng. Geol. 2008, 101, 49–59. [Google Scholar] [CrossRef]
- Montella, A.; Aria, M.; D’Ambrosio, A.; Maurielloa, F. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accid. Anal. Prev. 2012, 49, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Xiong, J.; Tu, C.; Luo, A. An algorithm of mining spatial topology association rules based on Apriori. In Proceedings of the International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 29–31 October 2010; pp. 101–104. [Google Scholar]
- Jencso, K.G.; Mcglynn, B.L. Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resour. Res. 2011, 47, 431–435. [Google Scholar] [CrossRef]
Name | Longitude | Latitude | Occurrence Time | Elevation Top (m) | Elevation Foot (m) | Landslide Type | Substrate | Stratigraphic Age | Daily Maximum Rainfall (mm) | Maximum Rainfall (mm) |
---|---|---|---|---|---|---|---|---|---|---|
XTBG Lanslide | 104.449722 | 26.230278 | 2005/7/1 | 1688 | 1614 | retrogressive landslide | soil slopes | P2 | 120.4 | 78.3 |
ZJS Lanslide | 104.446667 | 26.196667 | 2004/5/1 | 2032 | 1932 | retrogressive landslide | soil slopes | P1 | 120.4 | 78.3 |
DJB Lanslide | 104.455278 | 26.226944 | 2007/6/1 | 2124 | 1980 | retrogressive landslide | soil slopes | P2 | 120.4 | 78.3 |
XTB Lanslide | 104.448056 | 26.230556 | 2007/8/1 | 1937 | 1718 | retrogressive landslide | Rock Slope | P2 | 120.4 | 78.3 |
SLG Lanslide | 104.373833 | 26.153056 | 2009/7/1 | 2215 | 2134 | thrust load caused landslide | soil slopes | P2 | 120.4 | 78.3 |
DCZ Lanslide | 104.388778 | 26.167611 | 2009/7/1 | 2109 | 2038 | retrogressive landslide | soil slopes | P2 | 120.4 | 78.3 |
ZBZ Lanslide | 104.380028 | 26.149194 | 2008/7/1 | 2144 | 2114 | composite landslide | soil slopes | P2 | 120.4 | 78.3 |
XBZ Lanslide | 98.575417 | 25.184028 | 2001/4/1 | 1755 | 1715 | retrogressive landslide | soil slopes | Q4 | 94.7 | 47.5 |
Rule | Information |
---|---|
Rule 1 | If Under_max and Rain_max and River_min and LS1-1 and LanslideD_1 then Lanslide1 = 1 |
Rule 2 | If Under_max and Rain_max and River_min and LS1-1 and LanslideD_2 then Lanslide1 = 1 |
Rule 3 | If Rain_min and River_min and LS1-0 and LanslideD_3 then Lanslide1 = 1 |
Rule 4 | If Under_max and Rain_max and River_max and LS2-1 and LanslideD_3 then Lanslide2 = 1 |
Rule 5 | If Under_max and Rain_max and River_min and LS2-1 and LanslideD_3 then Lanslide2 = 1 |
Rule 6 | If Under_max and Rain_max and River_min and LS3-1 and LanslideD_2 then Lanslide3 = 1 |
Rule 7 | If Rain_max and River_min and LS1-1 and LS3-1 and LanslideD_2 then Lanslide3 = 1 |
NO. | Prejudgment | Confidence | Phenomenon |
---|---|---|---|
1 | Rain_max and LS1-1 and LanslideD_2 | 73% | Lanslide1 = 1 |
2 | Rain _max and River_max and LS1-1 and LanslideD_2 | 85% | Lanslide1 = 1 |
3 | Rain_max and River_min and Under_max and LS2-1 and LanslideD_2 | 90% | Lanslide2 = 1 |
4 | Rain _max and River_max and Under_max and LS1-1 and LS3-1 and LanslideD_2 | 95% | Lanslide1 = 1 Lanslide3 = 1 |
NO. | Prejudgment | Confidence | Phenomenon |
---|---|---|---|
1 | Rain_max and LS1-1 and LanslideD_2 | 70% | Lanslide1 = 1 |
2 | Rain _max and River_max and LS1-1 and LanslideD_2 | 81% | Lanslide1 = 1 |
3 | Rain_max and River_min and Under_max and LS2-1 and LanslideD_2 | 83% | Lanslide2 = 1 |
4 | Rain _max and River_max and Under_max and LS1-1 and LS3-1 and LanslideD_2 | 90% | Lanslide1 = 1 Lanslide3 = 1 |
No. | Input Datasets | Number of Predictions |
---|---|---|
1 | LS3-1 LS2-1 | 16 |
2 | LS3-1 LS1-1 | 15 |
3 | LS3-1 LS2-1 LS1-1 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zuo, X.; Yu, J.; Zhou, B. Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm. Appl. Sci. 2019, 9, 3819. https://doi.org/10.3390/app9183819
Guo W, Zuo X, Yu J, Zhou B. Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm. Applied Sciences. 2019; 9(18):3819. https://doi.org/10.3390/app9183819
Chicago/Turabian StyleGuo, Wenhao, Xiaoqing Zuo, Jianwei Yu, and Baoding Zhou. 2019. "Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm" Applied Sciences 9, no. 18: 3819. https://doi.org/10.3390/app9183819
APA StyleGuo, W., Zuo, X., Yu, J., & Zhou, B. (2019). Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm. Applied Sciences, 9(18), 3819. https://doi.org/10.3390/app9183819