Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response
Abstract
:1. Introduction
2. Proposed Method
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, Q.; Shao, F.; Lin, W.; Jiang, G. Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder. Pattern Recognit. 2018, 76, 242–255. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wu, J.L. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Trans. Image Process. 2014, 23, 1527–1542. [Google Scholar] [PubMed]
- Li, Q.; Lin, W.; Fang, Y. BSD: Blind image quality assessment based on structural degradation. Neurocomputing 2017, 236, 93–103. [Google Scholar] [CrossRef]
- Akhter, R.; Baltes, J.; Sazzed, Z.; Horita, Y. No-reference stereoscopic image quality assessment. In Stereoscopic Displays and Applications XXI; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7524, p. 75240T. [Google Scholar]
- Chen, M.-J.; Cormack, L.K.; Bovik, A.C. No-Reference quality assessment of natural stereopairs. IEEE Trans. Image Process. 2013, 22, 3379–3391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, S.; Pan, T.; Yu, L.; Qiu, W.; Zhou, Y.; Luo, T. Blind 3D image quality assessment based on self-similarity of binocular features. Neurocomputing 2017, 224, 128–134. [Google Scholar] [CrossRef]
- Jiang, G.; He, M.; Yu, M.; Shao, F.; Peng, Z. Perceptual stereoscopic image quality assessment method with tensor decomposition and manifold learning. IET Image Process. 2018, 12, 810–818. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Li, W. Blind stereoscopic video quality assessment: From depth perception to overall experience. IEEE Trans. Image Process. 2018, 27, 721–734. [Google Scholar] [CrossRef]
- Yue, G.; Hou, C.; Jiang, Q.; Yang, Y. Blind stereoscopic 3D image quality assessment via analysis of naturalness, structure, and binocular asymmetry. Signal Process. 2018, 150, 204–214. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, B.; Wang, Y.; Lu, W.; Meng, Q. Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process. Inf. Sci. 2018, 430, 1–16. [Google Scholar] [CrossRef]
- Liu, L.; Yang, B.; Huang, H. No-reference stereopair quality assessment based on singular value decomposition. Neurocomputing 2018, 275, 1823–1835. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Z.; Li, W. Dual-Stream Interactive Networks for No-Reference Stereoscopic Image Quality Assessment. IEEE Trans. Image Process. 2019, 28, 3946–3958. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Lin, W.; Wang, S.; Jiang, G.; Yu, M.; Dai, Q. Learning receptive fields and quality lookups for blind quality assessment of stereoscopic images. IEEE Trans. Cybern. 2016, 46, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, L.; Qiu, W.; Luo, T.; Wang, Z.; Wu, M.W. Utilizing binocular vision to facilitate completely blind 3D image quality measurement. Signal Process. 2016, 129, 130–136. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Bovik, A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zhang, L.; Mou, X. Learning without human scores for blind image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 995–1002. [Google Scholar]
- Zhou, W.; Yu, L.; Qiu, W.; Zhou, Y.; Wu, M. Local gradient patterns (LGP): An effective local statistical features extraction scheme for no-reference image quality assessment. Inf. Sci. 2017, 397, 1–14. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, L.; Zhou, Y.; Qiu, W.; Wu, M.-W.; Luo, T. Local and global feature learning for blind quality evaluation of screen content and natural scene images. IEEE Trans. Image Process. 2018, 27, 2086–2095. [Google Scholar] [CrossRef]
- Mobile 3DTV Content Delivery Optimization over DVB-H System. Available online: http://sp.cs.tut.fi/mobile3dtv/stereo-video/ (accessed on 16 March 2011).
- Levelt, W.J. The alternation process in binocular rivalry. Br. J. Psychol. 1966, 57, 225–238. [Google Scholar] [CrossRef]
- Klaus, A.; Sormann, M.; Karner, K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Chen, M.J.; Su, C.C.; Kwon, D.K.; Cormack, L.K.; Bovik, A.C. Full-reference quality assessment of stereopairs accounting for rivalry. Signal Process. Image Commun. 2013, 28, 1143–1155. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-C.; Bovik, A.C.; Cormack, L.K. Natural scene statistics of color and range. In Proceedings of the 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 257–260. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Ojala, T.; Pietikinen, M.; Menp, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
Criteria | FR | Blind | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Depending on Difference Mean Opinion Scores (DMOS) | Not Depending on DMOS | ||||||||||
SSIM | Lin [2] | Akhter [4] | Chen [5] | Yue [9] | Zhou [12] | IL_NIQE | Xue [16] | Shao [13] | Zhou [14] | Proposed | |
PLCC | 0.899 | 0.873 | 0.640 | 0.901 | 0.937 | 0.973 | 0.896 | 0.871 | 0.877 | 0.887 | 0.925 |
SROCC | 0.882 | 0.830 | 0.395 | 0.899 | 0.914 | 0.965 | 0.876 | 0.873 | 0.866 | 0.892 | 0.887 |
Distortion | Criteria | FR | Blind | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depending on DMOS | Not Depending on DMOS | |||||||||||
SSIM | Lin [2] | Akhter [4] | Chen [5] | Yue [9] | Zhou [12] | IL_NIQE | Xue [16] | Shao [13] | Zhou [14] | Proposed | ||
JP2K | PLCC | 0.865 | 0.838 | 0.905 | 0.907 | 0.934 | 0.988 | 0.854 | 0.919 | 0.901 | 0.848 | 0.939 |
SROCC | 0.857 | 0.839 | 0.866 | 0.863 | 0.832 | 0.961 | 0.861 | 0.886 | 0.870 | 0.837 | 0.887 | |
JPEG | PLCC | 0.485 | 0.214 | 0.729 | 0.695 | 0.744 | 0.916 | 0.533 | 0.722 | 0.456 | 0.626 | 0.673 |
SROCC | 0.435 | 0.199 | 0.675 | 0.617 | 0.595 | 0.912 | 0.544 | 0.682 | 0.429 | 0.638 | 0.612 | |
WN | PLCC | 0.937 | 0.928 | 0.904 | 0.917 | 0.962 | 0.988 | 0.927 | 0.858 | 0.950 | 0.925 | 0.943 |
SROCC | 0.940 | 0.928 | 0.914 | 0.919 | 0.932 | 0.965 | 0.920 | 0.938 | 0.914 | 0.931 | 0.909 | |
Gblur | PLCC | 0.920 | 0.948 | 0.617 | 0.917 | 0.971 | 0.974 | 0.904 | 0.923 | 0.919 | 0.899 | 0.976 |
SROCC | 0.882 | 0.935 | 0.555 | 0.878 | 0.857 | 0.855 | 0.873 | 0.871 | 0.932 | 0.833 | 0.903 |
Stereo Method | Pearson’s Linear Correlation Coefficient (PLCC) | Spearman’s Rank Order Correlation Coefficient (SROCC) |
---|---|---|
Ground Truth | 0.927 | 0.891 |
SAD | 0.921 | 0.883 |
Klaus | 0.925 | 0.887 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhou, W. Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Appl. Sci. 2019, 9, 3906. https://doi.org/10.3390/app9183906
Huang S, Zhou W. Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Applied Sciences. 2019; 9(18):3906. https://doi.org/10.3390/app9183906
Chicago/Turabian StyleHuang, Siyuan, and Wujie Zhou. 2019. "Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response" Applied Sciences 9, no. 18: 3906. https://doi.org/10.3390/app9183906
APA StyleHuang, S., & Zhou, W. (2019). Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Applied Sciences, 9(18), 3906. https://doi.org/10.3390/app9183906