A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms
Abstract
:Featured Application
Abstract
1. Introduction
2. Key Technologies for Analog-Radio-over-Fiber (A-RoF) Fronthaul Links
3. 5G Fronthaul Architecture for Private Hotspots
4. Simulation Modeling
4.1. Externally Modulated Laser (EML) Static Simulation Model
4.2. Externally Modulated Laser (EML) Chirp Simulation Model
4.3. Reconfigurable Optical Add-Drop Multiplexer (ROADM) Simulation Model
5. Hotspot Optical Fronthaul Using OFDM Multi-IF Band Transmission
5.1. Simulated Setup
5.1.1. Single-wavelength link without ROADM
5.1.2. Wavelength Division Multiplexing (WDM) Hotspot Link with Reconfigurable Optical Add-Drop Multiplexers (ROADMs)
5.2. Error Vector Magnitude (EVM) Performance of the Simulated Fronthaul Link
5.3. Fiber Length Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- 5G Forum. 5G Vision, Requirements, and Enabling Technologies v.1.0; 5G Forum: Dresden, Germany, February 2015. [Google Scholar]
- Ge, X.; Tu, S.; Mao, G.; Xiang, C.; Wang, C.X.; Han, T. 5G Ultra-Dense Cellular Networks. Wirel. Commun. 2016, 23, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Ericsson. The 5G Business Case for Enhanced Mobile Broadband. Available online: https://www.ericsson.com/en/networks/trending/insights-and-reports/the-5g-business-case-for-enhanced-mobile-broadband (accessed on 24 June 2019).
- International Telecommunications Union. Recommendation ITU-R M.2083-0; International Telecommunications Union: Geneva, Switzerland, September 2015. [Google Scholar]
- Next Generation Mobile Networks Alliance. NGMN 5G WHITE PAPER, v.1.0. Available online: https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf (accessed on 24 June 2019).
- Sakaguchi, K.; Haustein, T.; Barbarossa, S.; Strinati, E.C.; Clemente, A.; Destino, G.; Pärssinen, A.; Kim, I.; Chung, H.; Kim, J.; et al. Where, When, and How mmWave is Used in 5G and Beyond. EICE Trans. Electron. 2017, 100, 790–808. [Google Scholar] [CrossRef]
- Busari, A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguezet, J. Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey. Commun. Surv. Tut. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- TS 138 104-V15.2.0-5G.; NR.; Base Station (BS) Radio Transmission and Reception, July 2018. Available online: https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/ (accessed on 27 September 2019).
- Mueck, M.; Strinati, E.C.; Kim, I.-G.; Clemente, A.; Dore, A.D.; Kim, T.; Choi, T.; Chung, H.K.; Destino, G.; Parssinen, A.; et al. 5G CHAMPION—Rolling out 5G in 2018. In Proceedings of the IEEE Globecom Workshops, Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- 5G Infrastructure Association. 5G Pan-European Trials Roadmap. Available online: https://5g-ppp.eu/5g-trials-roadmap/ (accessed on 24 June 2019).
- Ericsson. The 5G Consumer Business Case. Available online: https://www.ericsson.com/en/networks/trending/hot-topics/create-your-5g-business-now/5g-consumer-business (accessed on 24 June 2019).
- Chih-Lin, I.; Huang, J.; Duan, R.; Cui, C.; Jiang, J.X.; Li, L. Recent Progress on C-RAN Centralization and Cloudification. IEEE Access 2014, 2, 1030–1039. [Google Scholar]
- Fujitsu White Paper. Centralized Radio Access Network (C-RAN) Transport. Available online: https://www.fujitsu.com/us/Images/Centralized-Radio-Access-Network-C-RAN-Transport-Application-Note.pdf (accessed on 13 September 2019).
- Chang, G.K.; Cheng, L. The benefits of convergence. Philos. Trans. R. Soc. A 2016, 374, 20140442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telefonica-Ericsson White Paper. Cloud RAN Architecture for 5G. Available online: http://www.tid.es/sites/526e527928a32d6a7400007f/content_entry5321ef0928a32d08900000ac/578f4eda1146dde411001d0e/files/WhitePaper_C-RAN_for_5G_-_In_collab_with_Ericsson_SC_-_quotes_-_FINAL.PDF (accessed on 26 June 2019).
- Ericsson White Paper. Cloud RAN—The Benefits of Virtualization, Centralization and Coordination; Ericsson White Paper: Stockholm, Sweden, 2015; Uen 281 23–3271. [Google Scholar]
- Pizzinat, A.; Chanclou, P.; Saliou, F.; Diallo, T. Things You Should Know About Fronthaul. J. Light. Technol. 2015, 33, 1077–1083. [Google Scholar] [CrossRef]
- Son, H.H.; Do, M.M. Mobile Network Architecture for 5G Era—New C-RAN Architecture and Distributed 5G Core, Netmanias Tech Blog.2015. Available online: https://www.netmanias.com/en/post/blog/8153/5g-c-ran-fronthaul-kt-korea-sdn-nfv-sk-telecom/mobile-network-architecture-for-5g-era-new-c-ran-architecture-and-distributed-5g-core (accessed on 2 September 2019).
- Kani, J.; Terada, J.; Suzuki, K.; Otaka, A. Solutions for Future Mobile Fronthaul and Access-Network Convergence. J. Lightw. Technol. 2017, 35, 527–534. [Google Scholar]
- Official Public Web Page for CPRI Specification. Available online: http://www.cpri.info/spec.html (accessed on 27 August 2019).
- e-CPRI Specification. Available online: https://www.gigalight.com/downloads/standards/ecpri-specification.pdf (accessed on 27 August 2019).
- Ranaweera, C.; Wong, E.; Nirmalathas, A.; Jayasundara, C.; Lim, C. 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks. In Proceedings of the International Conference on Optical Network Design and Modeling (ONDM), Budapest, Hungary, 15–18 May 2017. [Google Scholar]
- Tian, Y.; Song, S.; Powell, K.; Lee, K.-L.; Lim, C.; Nirmalathas, A.; Yi, X. A 60-GHz Radio-Over-Fiber Fronthaul Using Integrated Microwave Photonics Filters. IEEE Photonics Technol. Lett. 2017, 29, 1663–1666. [Google Scholar] [CrossRef]
- Delmade, A.; Browning, C.; Farhang, A.; Marchetti, N.; Doyle, L.E.; Koilpillai, R.D.; Barry, L.P.; Venkiteshet, D. Performance Analysis of Analog IF Over Fiber Fronthaul Link with 4G and 5G Coexistence. J. Opt. Commun. Netw. 2018, 10, 174–182. [Google Scholar] [CrossRef]
- Ishimura, S.; Bekkali, A.; Tanaka, K.; Nishimura, K.; Suzuki, M. 1.032-Tb/s CPRI-Equivalent Rate IF-Over-Fiber Transmission Using a Parallel IM/PM Transmitter for High-Capacity Mobile Fronthaul Links. J. Lightwave Technol. 2018, 36, 1478–1484. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Baldemair, R.; Moles-Cases, V.; He, N.; Werner, K.; Cedergren, A. OFDM Numerology Design for 5G New Radio to Support IoT, eMBB, and MBSFN. IEEE Commun. Mag. 2018, 2, 78–83. [Google Scholar] [CrossRef]
- Musumeci, F.; Bellanzon, C.; Carapellese, N.; Tornatore, M.; Pattavina, A.; Gosselin, S. Optimal BBU Placement for 5G C-RAN Deployment Over WDM Aggregation Networks. J. Lightw. Technol. 2016, 34, 1963–1970. [Google Scholar] [CrossRef]
- Waterhouse, R.; Novack, D. Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems. IEEE Microw. Mag. 2015, 16, 84–92. [Google Scholar] [CrossRef]
- Papaioannou, S.; Kalfas, G.; Vagionas, C.; Maniotis, P.; Miliou, A.; Pleros, N.; Neto, L.A.; Chanclou, P.; Caillaud, C.; Debregeas, H.; et al. 5G mm wave networks leveraging enhanced fiber-wireless convergence for high-density environments: The 5G-PHOS approach. In Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, 6–8 June 2018. [Google Scholar]
- Kalfas, G.; Maniotis, P.; Mesodiakaki, A.; Papaioannou, S.; Vagionas, C.; Gatzianas, M.; Kartsakli, E.; Vardakas, J. Medium-transparent Packet-based Fronthauling for 5G Hot-spot Networks. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018. [Google Scholar]
- Mitsolidou, C.; Vagionas, C.; Mesodiakaki, A.; Maniotis, P.; Kalfas, G.; Roeloffzen, C.G.H.; van Dijk, P.W.L.; Oldenbeuving, R.M.; Miliou, A.; Pleros, N. A 5G C-RAN Architecture for Hot-Spots: OFDM based Analog IFoF PHY and MAC Layer Design. In Proceedings of the 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019. [Google Scholar]
- Roeloffzen, C.G.; Hoekman, M.; Klein, E.J.; Wevers, L.S.; Timens, R.B.; Marchenko, D.; Geskus, D.; Dekker, R.; Alippi, A.; Grootjans, R.; et al. Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview. J. Sel. Top. Quant. Electron. 2018, 24, 1–21. [Google Scholar] [CrossRef]
- Liu, X.; Effenberger, F. Emerging Optical Access Network Technologies for 5G Wireless. J. Opt. Commun. Netw. 2016, 8, B70. [Google Scholar] [CrossRef]
- Lim, C.; Nirmalathas, A.; Bakaul, M.; Gamage, P.; Lee, K.-L.; Yang, Y.; Novak, D.; Waterhouse, R. Fiber-Wireless Networks and Subsystem Technologies. J. Lightw. Technol. 2010, 28, 390–405. [Google Scholar] [CrossRef]
- Gliese, U.; Norskov, S.; Nielsen, T.N. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Trans. Microw. Theory Technol. 1996, 44, 1716–1724. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, H.; Chand, N.; Effenberger, F. Efficient Mobile Fronthaul via DSP-Based Channel Aggregation. J. Lightw. Technol. 2016, 32, 1550–1556. [Google Scholar] [CrossRef]
- Argyris, N.; Kanta, K.; Iliadis, N.; Giannoulis, G.; Apostolopoulos, D.; Avramopoulos, H.; Papaioannou, S.; Vagionas, C.; Kalfas, G.; Pleros, N. DSP enabled Fiber-Wireless IFoF/mmWave link for 5G. In Proceedings of the IEEE 5G World Forum, Santa Clara, CA, USA, 9–11 July 2018. [Google Scholar]
- Dat, P.T.; Kanno, A.; Yamamoto, N.; Dien, N.; Hung, N.T.; Kawanishi, T. Full-Duplex Transmission of Nyquist-SCM Signal over a Seamless Bidirectional Fiber-Wireless System in W-Band. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3 March 2019. [Google Scholar]
- Vagionas, C.; Papaioannou, S.; Argyris, N.; Kanta, K.; Iliadis, N.; Giannoulis, G.; Apostolopoulos, D.; Avramopoulos, H.; Caillaud, C.; Debregeas, H.; et al. A 6-band 12Gb/s IFoF/V-band Fiber-Wireless Fronthaul link using an InP Externally Modulated Laser. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018. [Google Scholar]
- Vagionas, C.; Papaioannou, S.; Kalfas, G.; Pleros, N.; Argyris, N.; Kanta, K.; Iliadis, N.; Giannoulis, G.; Apostolopoulos, D.; Avramopoulos, H. A six-channel mmWave/IFoF link with 24Gb/s Capacity for 5G Fronthaul Networks. In Proceedings of the 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 22–25 October 2018. [Google Scholar]
- Argyris, N.; Giannoulis, G.; Kanta, K.; Iliadis, N.; Vagionas, C.; Papaioannou, S.; Kalfas, G.; Apostolopoulos, D.; Caillaud, C.; Debr´egeas, H.; et al. 5G mmWave Fiber-Wireless IFoF Analog Mobile Fronthaul Link With up to 24-Gb/s Multiband Wireless Capacity. J. Lightw. Technol. 2019, 37, 2883–2891. [Google Scholar] [CrossRef]
- Li, X.; Xiao, X.; Xu, Y.; Wang, K.; Zhao, L.; Xiao, J.; Yu, J. Real-time demonstration of over 20Gbps V- and W-band wireless transmission capacity in one OFDM-RoF system. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017. [Google Scholar]
- Martin, E.; Browning, C.; Barry, L.; Farhang, A.; Doyle, L.; Hoang, M.H.; John, M.; Ammann, M. 28 GHz 5G radio over fibre using UF-OFDM with optical heterodyning. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017. [Google Scholar]
- Sung, M.; Cho, S.-H.; Kim, J.; Lee, J.K.; Lee, J.H.; Chung, H.S. Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype with 28-GHz Millimeter wave. J. Lightw. Technol. 2018, 36, 601–609. [Google Scholar] [CrossRef]
- Guan, P.; Wu, D.; Tian, T.; Zhou, J.; Zhang, X.; Gu, L.; Benjebbour, A. 5G Field Trials: OFDM-Based Waveforms and Mixed Numerologies. J. Sel. Areas Commun. 2017, 35, 1234–1243. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Qiu, J.; Abdoli, J. On the Waveform for 5G. IEEE Commun. Mag. 2016, 54, 74–80. [Google Scholar] [CrossRef]
- Dat, P.T.; Kanno, A.; Inagaki, K.; Yamamoto, N.; Kawanishi, T. High-spectral efficiency millimeter wave-over-fiber system for future mobile fronthaul. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Kuwano, S.; Terada, J.; Yoshimoto, N. Operator perspective on next-generation optical access for future radio access. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Alimi, I.A.; Teixeira, A.L.; Monteiro, P.P. Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Comm. Surv. Tut. 2018, 20, 708–769. [Google Scholar] [CrossRef]
- Gasulla, I.; García, S.; Barrera, D.; Hervás, J.; Sales, S. Space-division Multiplexing for fiber-wireless communications. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017. [Google Scholar]
- Rommel, S.; Perez-Galacho, D.; Fabrega, J.M.; Muñoz, R.; Sales, S.; Monroy, I.T. High-Capacity 5G Fronthaul Networks Based on Optical Space Division Multiplexing. IEEE Trans. Broadcast. 2019, 65, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Winzer, P.J. Making Spatial Multiplexing a Reality. Nat. Photonics 2014, 8, 345–355. [Google Scholar] [CrossRef]
- Raddo, T.R.; Rommel, S.; Monroy, I.T.; Vagionas, C.; Kalfas, G.; Pleros, N. Analog Radio-over-Fiber 5G Fronthaul Systems: blueSPACE and 5G-PHOS Projects Convergence. In Proceedings of the 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019. [Google Scholar]
- Winzer, P.J.; Neilson, D.; Chraplyvy, A. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef]
- Debregeas, H.; Lelarge, F.; Brenot, R.; Caillaud, C.; Provost, J.-G.; Pommereau, F.; Nguyen, T.D.H.; Lanteri, D.; Mekhazni, K.; Barbet, S.; et al. Record 6dBm electroabsorption modulated laser for 10Gb/s and 25Gb/s high power budget access networks. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 19 March 2017. [Google Scholar]
- Marom, D.M.; Colbourne, P.D.; D’errico, A.; Fontaine, N.K.; Ikuma, Y.; Proietti, R.; Zong, L.; Rivas-Moscoso, J.M.; Tomkos, I. Survey of Photonic Switching Architectures and Technologies in Support of Spatially and Spectrally Flexible Optical Networking. J. Opt. Commun. Netw. 2017, 9, 1–26. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What will 5g be? J. Sel. Areas Commun. 2014, 32, 1064–1082. [Google Scholar] [CrossRef]
- Ranaweera, C.; Wong, E.; Nirmalathas, A.; Jayasundara, C.; Lim, C. 5G C-RAN with Optical Fronthaul: An Analysis from a Deployment Perspective. J. Lightw. Technol. 2018, 36, 2059–2068. [Google Scholar] [CrossRef]
- Corning. LEAF Optical Fiber. Available online: https://www.corning.com/au/en/products/communication-networks/products/fiber/leaf-fiber.html (accessed on 24 June 2019).
- Cheng, Y.; Wang, Q.L.; Pan, J. 1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme. Opt. Express 2014, 22, 31286–31292. [Google Scholar] [CrossRef]
- LioniX International. Available online: https://www.lionix-international.com/ (accessed on 24 June 2019).
- Horst, F.; Green, W.M.J.; Assefa, S.; Shank, S.M.; Vlasov, Y.A.; Offrein, B.J. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing. Opt. Express 2013, 21, 11652–11658. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, J.C.; Bois, A.; Lordello, T.; Mahgerefteh, D.; Menezo, S.; Poon, J.K.S. Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band. Opt. Express 2018, 26, 30076–30084. [Google Scholar] [CrossRef] [PubMed]
- XDeng, X.; LYan, L.; HJiang, H.; Feng, X.; Pan, W.; Luo, B. Polarization-insensitive and tunable silicon Mach-Zehnder wavelength filters with flat transmission passband. IEEE Photonics J. 2018, 10. [Google Scholar] [CrossRef]
- VPIphotonics: Simulation Software and Design Services. Available online: http://vpiphotonics.com/index.php (accessed on 24 June 2019).
- Fazel, K.; Kaiser, S. Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Toumba Stadium. Available online: https://en.wikipedia.org/wiki/Toumba_Stadium (accessed on 24 June 2019).
- ITU Recommendation. G. Sup55: Radio-over-Fibre (RoF) Technologies and Their Applications; ITU Recommendation: Geneva, Switzerland, 2015. [Google Scholar]
- 3GPP, TS 38.104 V15.0.0, [ 9.6.2.3-1, Dec. 2017. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.104/38104-f00.zip (accessed on 27 September 2019).
Parameter | Value |
---|---|
Modulation | OFDM 64-QAM |
IF bands | 4 |
IF center frequencies | 4.4, 5, 5.6, 6.2 (GHz) |
Bandwidth per IF band | 0.5 GHz |
Sub-Carrierss per IF band | 256 |
Sub-Carrier baud-rate | 1.953 MBaud |
Data rate per IF | 3 Gb/s |
Channel guard band | 100 MHz |
Bandwidth per λ | 2.3 GHz |
Data rate per λ | 12 Gb/s |
Building Block | Value |
---|---|
Externally Modulated Laser (EML) modulated average output power | 2.8 dBm |
Multiplexer (MUX) insertion losses | 1.5 dB |
Single Mode Fiber (SMF) propagation losses | 0.25 dB/km |
Reconfigurable Optical Add-Drop Multiplexer (ROADM) losses | 3.1 dB (max.) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsolidou, C.; Vagionas, C.; Mesodiakaki, A.; Maniotis, P.; Kalfas, G.; G. H. Roeloffzen, C.; W. L. van Dijk, P.; M. Oldenbeuving, R.; Miliou, A.; Pleros, N. A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms. Appl. Sci. 2019, 9, 4059. https://doi.org/10.3390/app9194059
Mitsolidou C, Vagionas C, Mesodiakaki A, Maniotis P, Kalfas G, G. H. Roeloffzen C, W. L. van Dijk P, M. Oldenbeuving R, Miliou A, Pleros N. A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms. Applied Sciences. 2019; 9(19):4059. https://doi.org/10.3390/app9194059
Chicago/Turabian StyleMitsolidou, Charoula, Christos Vagionas, Agapi Mesodiakaki, Pavlos Maniotis, George Kalfas, Chris G. H. Roeloffzen, Paul W. L. van Dijk, Ruud M. Oldenbeuving, Amalia Miliou, and Nikos Pleros. 2019. "A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms" Applied Sciences 9, no. 19: 4059. https://doi.org/10.3390/app9194059
APA StyleMitsolidou, C., Vagionas, C., Mesodiakaki, A., Maniotis, P., Kalfas, G., G. H. Roeloffzen, C., W. L. van Dijk, P., M. Oldenbeuving, R., Miliou, A., & Pleros, N. (2019). A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms. Applied Sciences, 9(19), 4059. https://doi.org/10.3390/app9194059