Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine
Abstract
:1. Introduction
2. Methodology and Model Descriptions
2.1. Methodology
2.2. Model Specifications
3. Results and Discussion
3.1. Flow Process Analysis
3.2. Spray Process Analysis
3.3. Combustion Process Analysis
3.3.1. Normal Combustion Process Analysis
3.3.2. Knock Combustion Process Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robert, A.; Richard, S.; Colin, O.; Poinsot, T. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame 2015, 162, 2788–2807. [Google Scholar] [CrossRef] [Green Version]
- Zhen, X.; Wang, Y.; Xu, S.; Zhu, Y.; Tao, C.; Xu, T.; Song, M. The engine knock analysis—An overview. Appl. Energy 2012, 92, 628–636. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Z. End-gas autoignition and detonation development in a closed chamber. Combust. Flame 2015, 162, 4102–4111. [Google Scholar] [CrossRef]
- Bradley, D.; Kalghatgi, G.T. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 2009, 156, 2307–2318. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Song, T.; Qi, Y.; He, X.; Shuai, S.; Wang, J. Relationship between super-knock and pre-ignition. Int. J. Engine Res. 2015, 16, 166–180. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc. Combust. Inst. 2015, 35, 101–115. [Google Scholar] [CrossRef]
- Yao, A.; Xu, H.; Yao, C. Analysis of pressure waves in the cone-type combustion chamber under SI engine knock. Energy Convers. Manag. 2015, 96, 146–158. [Google Scholar] [CrossRef]
- Mittal, V.; Revier, B.M.; Heywood, J.B. Phenomena that determine knock onset in spark-ignition engines. SAE Pap. 2007, 2007-01-0007. [Google Scholar] [CrossRef]
- Marseglia, G.; Costa, M.; Catapano, F.; Sementa, P.; Vaglieco, B.M. Study about the link between injection strategy and knock onset in an optically accessible multi-cylinder GDI engine. Energy Convers. Manag. 2017, 134, 1–19. [Google Scholar] [CrossRef]
- Robert, A.; Richard, S.; Colin, O.; Martinez, L.; de Francqueville, L. LES prediction and analysis of knocking combustion in a spark ignition engine. Proc. Combust. Inst. 2015, 35, 2941–2948. [Google Scholar] [CrossRef]
- Pan, J.; Wei, H.; Shu, G.; Pan, M.; Feng, D.; Li, N. LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Appl. Energy 2017, 191, 183–192. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Y.; He, X.; Wang, J.; Shuai, S.; Law, C.K. Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 2015, 144, 222–227. [Google Scholar] [CrossRef]
- Park, S.; Woo, S.; Oh, H.; Lee, K. Effects of various lubricants and fuels on pre-ignition in a turbocharged direct-injection spark-ignition engine. Energy Fuels 2017, 31, 12701–12711. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Rolf, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Okada, Y.; Miyashita, S.; Izumi, Y.; Hayakawa, Y. Study of low-speed pre-ignition in boosted spark ignition engine. SAE Int. J. Engines 2014, 7, 584–594. [Google Scholar] [CrossRef]
- Dahnz, C.; Han, K.-M.; Spicher, U.; Magar, M. Investigations on pre-ignition in highly supercharged SI engines. SAE Int. J. Engines 2010, 3, 214–224. [Google Scholar] [CrossRef]
- Dahnz, C.; Spicher, U. Irregular combustion in supercharged spark ignition engines pre-ignition and other phenomena. Int. J. Engine Res. 2010, 11, 485–498. [Google Scholar] [CrossRef]
- Kalghatgi, G.T.; Bradley, D. Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int. J. Engine Res. 2012, 13, 399–414. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Zhu, Y. Study of knock in a high compression ratio SI methanol engine using LES with detailed chemical kinetics. Energy Convers. Manag. 2013, 75, 523–531. [Google Scholar] [CrossRef]
- Shao, J.; Rutland, C.J. Modeling investigation of different methods to suppress engine knock on a small spark ignition engine. J. Eng. Gas Turbines Power 2015, 137, 061506–061520. [Google Scholar] [CrossRef]
- Teraji, A.; Kakuho, A.; Tsuda, T.; Hashizume, Y. A study of the knocking mechanism in terms of flame propagation behavior based on 3D numerical simulations. SAE Int. J. Engines 2009, 2, 666–673. [Google Scholar] [CrossRef]
- Senecal, P.; Pomraning, E.; Richards, K.J.; Briggs, T.E. Multi-dimensional modeling of direct injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE Pap. 2003, 2003-01-1043. [Google Scholar] [CrossRef]
- Richards, K.J.; Senecal, P.K.; Pomraning, E. CONVERGE Users Guide & Reference Manual (Version 2.3.0); Convergent Science: Middleton, WI, USA, 2016. [Google Scholar]
- Turns, S.R. An Introduction to Combustion; McGraw-Hill, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Han, Z.; Reitz, R.D. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- Wang, F.; Reitz, R.D.; Pera, C.; Wang, Z.; Wang, J. Application of generalized RNG turbulence model to flow in motored single-cylinder PFI engine. Eng. Appl. Comput. Fluid Mech. 2013, 7, 486–495. [Google Scholar] [CrossRef]
- Pal, P.; Wu, Y.; Lu, T.; Som, S.; See, Y.C.; Moine, A.L. Multidimensional numerical simulations of knocking combustion in a cooperative fuel research engine. J. Energy Resour. Technol. 2018, 140, 102205. [Google Scholar] [CrossRef]
- Pal, P.; Mansfield, A.B.; Arias, P.G.; Wooldridge, M.S.; Im, H.G. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combust. Theory Model. 2015, 19, 587–601. [Google Scholar] [CrossRef]
- Gu, X.J.; Emerson, D.R.; Bradley, D. Modes of reaction front propagation from hot spots. Combust. Flame 2003, 133, 63–74. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, M.; Xie, M.; Pang, B. Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semidecoupling methodology. Energy Fuels 2012, 26, 7069–7083. [Google Scholar] [CrossRef]
- Wang, F. Multidimensional Numerical Simulation of Flame Propagation and Knock Combustion in Turbocharged Gasoline Direct Injection Engine. Ph.D. Thesis, Tsinghua University, Beijing, China, 2015; pp. 36–55. [Google Scholar]
- Qi, Y.; Wang, Z.; Wang, J.; He, X. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame 2015, 162, 4119–4128. [Google Scholar] [CrossRef]
- Zahdeh, A.; Rothenberger, P.; Nguyen, W.; Anbarasu, M. Fundamental approach to investigate pre-ignition in boosted SI engines. SAE Int. J. Engines 2011, 4, 246–273. [Google Scholar] [CrossRef]
- Hettinger, A.; Kulzer, A.; Spicher, U. Higher specific load—Increasing knock risk evaluation of measures for knock reduction using multiple pressure indication. In Proceedings of the 9th International Symposium on Combustion Diagnostics 2010, Kurhaus Baden-Baden, Germany, 8–9 June 2010. [Google Scholar]
Parameters | Value |
---|---|
Bore/stroke (mm) | 74.5/80 |
Number of cylinders | 4 |
Compression ratio | 10:1 |
Fuel supply method | Direct injection |
Torque (N.m) | 200 (1400 r/min) |
Rated speed (r/min)/rated power (kW) | 5000/90 |
Conditions | Value |
---|---|
Intake temperature/K | 360 |
Intake manifold temperature/K | 332 |
Intake manifold pressure/MPa | 1.8 |
Cylinder head temperature/K | 550 |
Cylinder temperature/K | 837 |
Cylinder wall temperature/K | 475 |
Piston top temperature/K | 600 |
Exhaust temperature/K | 550 |
Exhaust manifold temperature/K | 827 |
Exhaust manifold pressure/MPa | 1.6 |
Model Category | Name |
---|---|
Turbulent diffusion model | O’Rourke turbulent dispersion model |
Evaporation model | Frossling model |
Collision model | NTC (No Time Counter) |
Fuel drop resistance model | Dynamic drag model |
Impingement model | Wall film model |
Broken up model | K–H and R–T |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, X.; Wang, M.; Han, Y.; Chen, H. Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine. Appl. Sci. 2019, 9, 4133. https://doi.org/10.3390/app9194133
Wang X, Zhang X, Wang M, Han Y, Chen H. Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine. Applied Sciences. 2019; 9(19):4133. https://doi.org/10.3390/app9194133
Chicago/Turabian StyleWang, Xi, Xun Zhang, Minfei Wang, Yue Han, and Hanyu Chen. 2019. "Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine" Applied Sciences 9, no. 19: 4133. https://doi.org/10.3390/app9194133
APA StyleWang, X., Zhang, X., Wang, M., Han, Y., & Chen, H. (2019). Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine. Applied Sciences, 9(19), 4133. https://doi.org/10.3390/app9194133