Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration
Abstract
:Featured Application
Abstract
1. Introduction
2. Structure of the Bilaminated Piezoelectric Composite Vibrator
3. Finite Element Simulation of the Piezoelectric Composite Bilaminated Vibrator
4. Fabrication and Performance Test of the Bilaminated Vibrator
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woollett, R.S. Theory of the Piezoelectric Flexural DISK Transducer with Applications to Underwater Sound; Research Report #490; U.S. Navy Underwater Sound Laboratory: New London, CT, USA, 5 December 1960. [Google Scholar]
- Aronov, B.S. The energy method for analyzing the piezoelectric electroacoustic transducers II. Acoust. Soc. Am. 2005, 118, 627–637. [Google Scholar] [CrossRef]
- Aronov, B.S. Nonuniform piezoelectric circular plate flexural transducers with underwater applications. Acoust. Soc. Am. 2015, 138, 1570. [Google Scholar] [CrossRef] [PubMed]
- Jinduo, Z.; Guidong, L.; Fuhu, L. Analysis and calculation on receiving characteristics of the bimorph flexural transducers. Tech. Acoust. 1999, 18, 107–110. [Google Scholar]
- Xiping, H.; Qiang, L. Piezoelectric ceramic bimorph in bending vibration. J. Jishou Univ. 2017, 38, 13–18. [Google Scholar] [CrossRef]
- Shaohu, D.; Ting, Z. Bending vibration analysis of the circular composite piezoelectric vibrator. Basic Sci. J. Text. Univ. 2007, 20, 172–175. [Google Scholar] [CrossRef]
- Ningning, Z. Research on flexural vibration characteristics of three laminated piezoelectric transducers. Tech. Acoust. 2017, 36, 383–389. [Google Scholar] [CrossRef]
- Pin, Z.; Xiping, H.; Yanjun, W. Radiation impedance of thin circular flat plate in flexural vibration with free boundary. J. Shanxi Norm. Univ. 2007, 35, 31–34. [Google Scholar] [CrossRef]
- Shuyu, L. Study on natural vibration and resonance frequency of rectangular radiators in flexural vibration. J. Shanxi Norm. Univ. 2000, 28, 40–46. [Google Scholar] [CrossRef]
- Wenxiao, Q.; Xiaohua, C.; Fei, Z. Effect of boundary conditions on vibration modes of bending vibrator in acoustic logging. Sci. China Ser. D Earth Sci. 2008, 38, 174–179. [Google Scholar] [CrossRef]
- Lin, Z.; Weijun, L.; Dong, W. The design of sandwich dipole transducer based on finite element method. Well Logging Technol. 2009, 33, 106–109. [Google Scholar] [CrossRef]
- Mansoor, M.B.; KÖble, S.; Wangwong, T.; Woias, P.; Goldschmidtböing, F. Design, characterization and sensitivity analysis of a piezoelectric ceramic/metal composite transducer. Micromachines 2017, 8, 271. [Google Scholar] [CrossRef]
- Uchino, K. Advanced Piezoelectric Material: Science and Technology, 2nd ed.; Woodhead Publishing: Duxford, UK, 2017. [Google Scholar]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Klicker, K.A.; Biggers, J.V.; Newnham, R.E. Composites of PZT and Epoxy for Hydrostatic Transducer Applications. J. Am. Ceram. Soc. 1981, 64, 5–9. [Google Scholar] [CrossRef]
- Gururaja, T.R.; Schulze, W.A.; Shrout, T.R.; Safari, A.; Cross, L.W.E. High frequency applications of PZT/polymer composite materials. Ferroelectrics 1981, 39, 1245–1248. [Google Scholar] [CrossRef]
- Savakus, H.P.; Klicker, K.A.; Newnham, R.E. PZT-epoxy piezoelectric transducers: A simplified fabrication procedure. Mater. Res. Bull. 1981, 16, 677–680. [Google Scholar] [CrossRef]
- Auld, B.A.; Kunkel, H.A.; Shui, Y.A.; Wang, Y. Dynamic Behavior of Periodic Piezoelectric Composites. In Proceedings of the 1983 Ultrasonics Symposium, Atlanta, GA, USA, 31 October–2 November 1983; pp. 554–558. [Google Scholar] [CrossRef]
- Smith, W.A.; Shaulov, A.; Auld, B.A. Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. IEEE Ultrason. Symp. 1985, 642–647. [Google Scholar] [CrossRef]
- Chan, H.L.W.; Unsworth, J. Effect of thinning and ceramic width on properties of 1−3 PZT/EPOXY composites. Ferroelectr. Lett. Sect. 1986, 6, 133–137. [Google Scholar] [CrossRef]
- Takeuchi, H.; Nakaya, C.; Katakura, K. Medical Ultrasonic Probe Using PZT/Polymer Composite. In Proceedings of the IEEE 1984 Ultrasonics Symposium, Dallas, TX, USA, 14–16 November 1984; pp. 507–510. [Google Scholar] [CrossRef]
- Yongqiu, Z.; Yuanguang, H.; Qichang, X. Sandwich PZT/polymer composite transducer. Ferroelectrics 1983, 49, 241–249. [Google Scholar] [CrossRef]
- Jialing, Z.L.; Likun, W.; Fuxue, Z. Preparation of large area 0-3 piezoelectric composites for hydrophone. Piezoelectr. Acoustoopt. 1999, 21. [Google Scholar] [CrossRef]
- Xuecang, G.; Mingxuan, L. Study on 1-3 piezoelectric PZT/epoxy composite material and transducer for ultrasonic transducer. Appl. Acoust. 1991, 10, 10–14. [Google Scholar]
- Hwang, Y.; Ahn, H.; Nguyen, D.-N.; Kim, W.; Moon, W. An underwater parametric array source transducer composed of PZT/thin-polymer composite. Sens. Actuators A Phys. 2018, 279, 601–616. [Google Scholar] [CrossRef]
- Kuznetsova, I.E.; Zaitsev, B.D.; Borodina, I.A.; Shikhabudinov, A.M.; Teplykh, A.A.; Etoungh, D.M.; Feuillard, G. The effect of nanocomposite polymeric layer on the radiation of antisymmetric zero-order Lamb wave in a piezoelectric plate contacting with liquid. J. Appl. Phys. 2013, 113, 224507. [Google Scholar] [CrossRef]
- Changjiu, D.; Mingxuan, L. 1-3 Piezo-Composite materials. Appl. Acoust. 1995, 14, 2–7. [Google Scholar] [CrossRef]
- Abdollahi, A.; Arias, I. Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators. J. Appl. Mech. 2015, 82, 121003-1–121003-4. [Google Scholar] [CrossRef]
- Koyama, D.; Kashihara, Y.; Hatanaka, M.; Nakamura, K.; Matsukawa, M. Movable optical lens array using ultrasonic vibration. Sens. Actuators A 2016, 237, 35–40. [Google Scholar] [CrossRef]
- Guidong, L.; Jinduo, Z.; Renqian, W. Piezoelectric Transducers and Arrays; Peking University Press: Beijing, China, 2005; pp. 172–173. [Google Scholar]
- Newnhan, R.E. Composite piezoelectric transducers. Mater. Eng. 1980, 2, 93–106. [Google Scholar]
- Mendiola, J.; Jimenez, B. Review of recent work on ferroelectric composite systems. Ferroelectrics 1984, 53, 159–166. [Google Scholar] [CrossRef]
- Gururaja, T.R. Piezoelectric Composite Materials for Ultrasonic Transducer Applications. IEEE Trans. Sonics Ultrason. 1985, 32, 481–498. [Google Scholar] [CrossRef]
- Ting, R.Y. Evaluation of new piezoelectric composite materials for hydrophone applications. Ferroelectrics 1986, 67, 143. [Google Scholar] [CrossRef]
- Chao, Z. Research on Three-Phase Piezocomposite and Curved Surface Transducer. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2019. [Google Scholar]
- Lei, Q. Research on Transducer with Broad Beamwidth. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2010. [Google Scholar]
- Li, L. Research on 1-3 Series Piezoelectric Composite and Underwater Transducer 1-3. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2008. [Google Scholar]
- Hongwei, W.; Likun, W.; Yonghong, Z. 2-2 type piezoelectric composite pipe frequency simulation and fabrication and performance test. Electron. Compon. Mater. 2015, 34, 1–4. [Google Scholar] [CrossRef]
- Jikang, Y.; Guoyou, G.; Jialin, S.; Jingchao, C.; Jiatao, Z. Preparation of piezoelectric composites. J. Kunming Univ. Sci. Technol. 2000, 6. [Google Scholar] [CrossRef]
- Xiao, F. Study on Fabrication and Properties of 2-2 Piezoelectric Composites. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2012. [Google Scholar]
- Yanjun, Z.; Likun, W.; Lei, Q. Finite element analysis and experimental study on 1-3 piezoelectric composites with modified polymer phase. Ferroelectrics 2019, 537, 223–236. [Google Scholar] [CrossRef]
- Xing, L.; Likun, W.; Chao, Z.; Yanjun, Z. The effect of piezoelectric ceramic volume fraction on the thickness vibration characteristics of 1-3 piezocomposites. Ferroelectrics 2018, 531, 84–91. [Google Scholar] [CrossRef]
- Xing, L.; Likun, W.; Chao, Z.; Yanjun, Z. Effect of ceramic volume fraction on the performance of the 1-3 composite transducers. Piezoelectr. Acoustoopt. 2019, 41, 396–400. [Google Scholar] [CrossRef]
Parameters | PZT-5A | Parameters | Epoxy Resins |
---|---|---|---|
(kg/m3) | 7750 | (kg/m3) | 1050 |
(1010N/m2) | 12.1 | (1010N/m2) | 0.36 |
(1010N/m2) | 7.54 | (1010N/m2) | 0.138 |
(1010N/m2) | 7.52 | (10−12m2/N) | 278 |
(1010N/m2) | 11.1 | (10−12m2/N) | −97 |
(10−12m2/N) | 16.4 | 4 | |
(10−12m2/N) | −5.74 | 4 | |
(10−12m2/N) | −7.22 | ||
(10−12m2/N) | 18.8 | ||
d31 (10−12C/N) | 470 | ||
d33 (10−12C/N) | −171 | ||
e31 (C/m2) | −5.4 | ||
e33 (C/m2) | 15.8 | ||
830 | |||
1700 |
Type | Series Resonance Frequency fs (Hz) | Parallel Resonance Frequency fp (Hz) | Bandwidth (Hz) | Electromechanical Coupling Coefficient |
---|---|---|---|---|
2-2 type | 4630 | 4850 | 760 | 0.298 |
1-3 type | 6075 | 6325 | 420 | 0.278 |
Number of Vibrators | Series Resonance Frequency/fs (Hz) | Parallel Resonance Frequency/fp (Hz) | Electromechanical Coupling Coefficient/ke | Maximum Displacement/Sm (10−11 m) |
---|---|---|---|---|
1 | 4628 | 4848 | 0.2978 | 7.81 |
2 | 4630 | 4850 | 0.2978 | 7.79 |
3 | 4628 | 4850 | 0.2978 | 7.82 |
4 | 4630 | 4850 | 0.2978 | 7.79 |
5 | 4630 | 4850 | 0.2978 | 7.81 |
Number of Vibrators | Series Resonance Frequency/fs (Hz) | Parallel Resonance Frequency/fp (Hz) | Electromechanical Coupling Coefficient/ke | Maximum Displacement/Sm (10−11 m) |
---|---|---|---|---|
1 | 4705 | 4925 | 0.295 | 3.389 |
2 | 4703 | 4923 | 0.295 | 3.388 |
3 | 4705 | 4925 | 0.295 | 3.390 |
4 | 4703 | 4923 | 0.295 | 3.390 |
5 | 4705 | 4925 | 0.295 | 3.389 |
Type | Series Resonance Frequency/fs (Hz) | Parallel Resonance Frequency/fp (Hz) | Electromechanical Coupling Coefficient/ke | Maximum Displacement/Sm (10−11 m) |
---|---|---|---|---|
2-2 | 4628 | 4848 | 0.298 | 7.79 |
ceramic | 4704 | 4924 | 0.295 | 3.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, L.; Zhong, C.; Zhang, Y.; Hao, S.; Sun, R. Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration. Appl. Sci. 2019, 9, 4191. https://doi.org/10.3390/app9194191
Liu X, Wang L, Zhong C, Zhang Y, Hao S, Sun R. Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration. Applied Sciences. 2019; 9(19):4191. https://doi.org/10.3390/app9194191
Chicago/Turabian StyleLiu, Xia, Likun Wang, Chao Zhong, Yanjun Zhang, Shaohua Hao, and Ruiqing Sun. 2019. "Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration" Applied Sciences 9, no. 19: 4191. https://doi.org/10.3390/app9194191
APA StyleLiu, X., Wang, L., Zhong, C., Zhang, Y., Hao, S., & Sun, R. (2019). Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration. Applied Sciences, 9(19), 4191. https://doi.org/10.3390/app9194191