Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Study
2.2. Experimental Setup
3. Results
3.1. Simulation Results
3.2. Experimental Results
3.3. System Calibration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.V. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 171–179. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic microscopy. Laser Photonics Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hong, H.; Cai, W. Photoacoustic imaging. Cold Spring Harb. Protoc. 2011, 2011, pdb-top065508. [Google Scholar] [CrossRef]
- Zhong, H.; Duan, T.; Lan, H.; Zhou, M.; Gao, F. Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors (Basel Switz.) 2018, 18, 2264. [Google Scholar] [CrossRef]
- Hariri, A.; Fatima, A.; Mohammadian, N.; Mahmoodkalayeh, S.; Ansari, M.A.; Bely, N.; Avanaki, M.R. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. J. Biomed. Opt. 2017, 22, 075001. [Google Scholar] [CrossRef]
- Mohammadi-Nejad, A.-R.; Mahmoudzadeh, M.; Hassanpour, M.S.; Wallois, F.; Muzik, O.; Papadelis, C.; Hansen, A.; Soltanian-Zadeh, H.; Gelovani, J.; Nasiriavanaki, M. Neonatal brain resting-state functional connectivity imaging modalities. Photoacoustics 2018, 10, 1–19. [Google Scholar] [CrossRef]
- Nasiriavanaki, M.; Xia, J.; Wan, H.; Bauer, A.Q.; Culver, J.P.; Wang, L.V. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA 2014, 111, 21–26. [Google Scholar] [CrossRef]
- Turani, Z.; Fatemizadeh, E.; Blumetti, T.; Daveluy, S.; Moraes, A.F.; Chen, W.; Mehregan, D.; Andersen, P.E.; Nasiriavanaki, M. Optical Radiomic Signatures Derived from Optical Coherence Tomography Images to Improve Identification of Melanoma. Cancer Res. 2019, 79, 2021–2030. [Google Scholar] [CrossRef]
- Adabi, S.; Fotouhi, A.; Xu, Q.; Daveluy, S.; Mehregan, D.; Podoleanu, A.; Nasiriavanaki, M. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin. Ski. Res. Technol. 2018, 24, 265–273. [Google Scholar] [CrossRef]
- Adabi, S.; Hosseinzadeh, M.; Noie, S.; Daveluy, S.; Clayton, A.; Mehregan, D.; Conforto, S.; Nasiriavanaki, M. Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms. arXiv 2017, arXiv:1706.02758. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, J.; Wang, L.V. Tutorial on photoacoustic tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Huabei, J. Finite-element-based photoacoustic tomography in time domain. J. Opt. A Pure Appl. Opt. 2009, 11, 085301. [Google Scholar]
- Nie, L.; Guo, Z.; Wang, L.V. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers. J. Biomed. Opt. 2011, 16, 076005. [Google Scholar] [CrossRef] [PubMed]
- Kratkiewicz, K.; Manwar, R.; Rajabi-Estarabadi, A.; Fakhoury, J.; Meiliute, J.; Daveluy, S.; Mehregan, D.; Avanaki, K.M. Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model. Sensors 2019, 19, 2815. [Google Scholar] [CrossRef]
- Zafar, M.; Kratkiewicz, K.; Manwar, R.; Avanaki, M. Development of Low-Cost Fast Photoacoustic Computed Tomography: System Characterization and Phantom Study. Appl. Sci. 2019, 9, 374. [Google Scholar] [CrossRef]
- Manwar, R.; Hosseinzadeh, M.; Hariri, A.; Kratkiewicz, K.; Noei, S.; Avanaki, M.R.N. Photoacoustic Signal Enhancement: Towards Utilization of Low Energy Laser Diodes in Real-Time Photoacoustic Imaging. Sensors 2018, 18, 3498. [Google Scholar] [CrossRef]
- Fatima, A.; Kratkiewicz, K.; Manwar, R.; Zafar, M.; Zhang, R.; Huang, B.; Dadashzadesh, N.; Xia, J.; Avanaki, M. Review of cost reduction methods in photoacoustic computed tomography. Photoacoustics 2019, 15, 100137. [Google Scholar] [CrossRef]
- Meimani, N.; Abani, N.; Gelovani, J.; Avanaki, M.R. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging. Photoacoustics 2017, 7, 27–35. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z.; Wang, L.V.; Erpelding, T.N.; Jankovic, L.; Robert, J.-L.; David, G. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe. J. Biomed. Opt. 2012, 17, 061208. [Google Scholar] [CrossRef]
- Kitai, T.; Torii, M.; Sugie, T.; Kanao, S.; Mikami, Y.; Shiina, T.; Toi, M. Photoacoustic mammography: Initial clinical results. Breast Cancer 2014, 21, 146–153. [Google Scholar] [CrossRef]
- Kruger, R.A.; Kuzmiak, C.M.; Lam, R.B.; Reinecke, D.R.; Del Rio, S.P.; Steed, D. Dedicated 3D photoacoustic breast imaging. Med. Phys. 2013, 40, 113301. [Google Scholar] [CrossRef] [Green Version]
- Piras, D.; Xia, W.; Steenbergen, W.; van Leeuwen, T.G.; Manohar, S. Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: Present status and future perspectives. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 730–739. [Google Scholar] [CrossRef]
- Yao, J.; Xia, J.; Maslov, K.I.; Nasiriavanaki, M.; Tsytsarev, V.; Demchenko, A.V.; Wang, L.V. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 2013, 64, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Hariri, A.; Omidi, P.; Nasiriavanaki, M. Resting-state functional connectivity measurement in the mouse brain using a low cost photoacoustic computed tomography. In Frontiers in Optics; Optical Society of America: Washington, DC, USA, 2016; p. JW4A-62. [Google Scholar]
- Dean-Ben, X.L.; Razansky, D. Localization optoacoustic tomography. Light Sci. Appl. 2018, 7, 18004. [Google Scholar] [CrossRef]
- Mohammadi, L.; Manwar, R.; Behnam, H.; Tavakkoli, J.; Avanaki, M.R.N. Skull’s aberration modeling: Towards photoacoustic human brain imaging. In Photons Plus Ultrasound: Imaging and Sensing; International Society for Optics and Photonics: San Diego, CA, USA, 2019; p. 108785W. [Google Scholar]
- Tan, Y.; Xia, K.; Ren, Q.; Li, C. Three-dimensional photoacoustic imaging via scanning a one dimensional linear unfocused ultrasound array. Opt. Express 2017, 25, 8022–8028. [Google Scholar] [CrossRef]
- Niederhauser, J.J.; Jaeger, M.; Lemor, R.; Weber, P.; Frenz, M. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 2005, 24, 436–440. [Google Scholar] [CrossRef]
- Singh, M.K.A.; Steenbergen, W.; Manohar, S. Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging. In Frontiers in Biophotonics for Translational Medicine; Springer: Berlin/Heidelberg, Germany, 2016; pp. 209–247. [Google Scholar]
- Dima, A.; Burton, N.C.; Ntziachristos, V. Multispectral optoacoustic tomography at 64, 128, and 256 channels. J. Biomed. Opt. 2014, 19, 036021. [Google Scholar] [CrossRef]
- Brecht, H.-P.F.; Su, R.; Fronheiser, M.P.; Ermilov, S.A.; Conjusteau, A.; Oraevsky, A.A. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 2009, 14, 064007. [Google Scholar] [CrossRef]
- Li, C.; Aguirre, A.; Gamelin, J.K.; Maurudis, A.; Zhu, Q.; Wang, L.V. Real-time photoacoustic tomography of cortical hemodynamics in small animals. J. Biomed. Opt. 2010, 15, 010509. [Google Scholar] [CrossRef]
- Xia, J.; Chatni, M.R.; Maslov, K.I.; Guo, Z.; Wang, K.; Anastasio, M.A.; Wang, L.V. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 2012, 17, 050506. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Stoica, G.; Wang, L.V. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt. Lett. 2003, 28, 1739–1741. [Google Scholar] [CrossRef]
- Laufer, J.; Norris, F.C.; Cleary, J.O.; Zhang, E.Z.; Treeby, B.E.; Cox, B.T.; Johnson, S.P.; Scambler, P.; Lythgoe, M.F.; Beard, P.C. In vivo photoacoustic imaging of mouse embryos. J. Biomed. Opt. 2012, 17, 061220. [Google Scholar] [CrossRef]
- Razansky, D.; Buehler, A.; Ntziachristos, V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 2011, 6, 1121. [Google Scholar] [CrossRef]
- Mahmoodkalayeh, S.; Lu, X.; Ansari, M.A.; Li, H.; Nasiriavanaki, M. Optimization of light illumination for photoacoustic computed tomography of human infant brain. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 27 January–1 February 2018; p. 104946U. [Google Scholar]
- Mahmoodkalayeh, S.; Ansari, M.A.; Nasiriavanaki, M. A new illumination scheme for photoacoustic computed tomography. In Photons Plus Ultrasound: Imaging and Sensing; International Society for Optics and Photonics: San Diego, CA, USA, 2018; p. 104946T. [Google Scholar]
- Li, M.; Lan, B.; Liu, W.; Xia, J.; Yao, J. Internal-illumination photoacoustic computed tomography. J. Biomed. Opt. 2018, 23, 030506. [Google Scholar] [CrossRef]
- Ephrat, P.; Roumeliotis, M.; Prato, F.S.; Carson, J.J. Four-dimensional photoacoustic imaging of moving targets. Opt. Express 2008, 16, 21570–21581. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, B.; Ji, L.; Jiang, H. 4-D photoacoustic tomography. Sci. Rep. 2013, 3, 1113. [Google Scholar] [CrossRef]
- Tang, J.; Coleman, J.E.; Dai, X.; Jiang, H. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 2016, 6, 25470. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Z.; Maslov, K.I.; Wang, L.V.; Aguirre, A.; Zhu, Q.; Percival, C. Three-dimensional photoacoustic tomography based on the focal-line concept. J. Biomed. Opt. 2011, 16, 090505. [Google Scholar] [CrossRef]
- Gateau, J.; Gesnik, M.; Chassot, J.-M.; Bossy, E. Single-side access, isotropic resolution and multispectral 3D photoacoustic imaging with rotate-translate scanning of ultrasonic detector array. arXiv 2015, arXiv:1501.06931. [Google Scholar]
- Wygant, I.; Zhuang, X.; Kuo, P.; Yeh, D.; Oralkan, O.; Khuri-Yakub, B. Photoacoustic imaging using a two-dimensional CMUT array. In Proceedings of the IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; pp. 1921–1924. [Google Scholar]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed]
- Freeborn, D.; Trevino, H.; Adler, L.C. Newborn Measurements. In Health Encyclopedia; University of Rochester Medical Center: Rochester, NY, USA, 2019. [Google Scholar]
- Kogan, J. A New Computationally Efficient Method for Spacing n Points on a Sphere. Rose-Hulman Undergrad. Math. J. 2017, 18, 5. [Google Scholar]
- Mozaffarzadeh, M.; Mahloojifar, A.; Orooji, M.; Adabi, S.; Nasiriavanaki, M. Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging. IEEE Trans. Biomed. Eng. 2018, 65, 31–42. [Google Scholar] [CrossRef]
- Omidi, P.; Zafar, M.; Mozaffarzadeh, M.; Hariri, A.; Haung, X.; Orooji, M.; Nasiriavanaki, M. A novel dictionary-based image reconstruction for photoacoustic computed tomography. Appl. Sci. 2018, 8, 1570. [Google Scholar] [CrossRef]
- Mozaffarzadeh, M.; Mahloojifar, A.; Orooji, M.; Kratkiewicz, K.; Adabi, S.; Nasiriavanaki, M. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm. J. Biomed. Opt. 2018, 23, 026002. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Xing, D.; Wang, Y.; Zeng, Y.; Tan, Y.; Chen, Q. Fast photoacoustic imaging system based on 320-element linear transducer array. Phys. Med. Biol. 2004, 49, 1339. [Google Scholar] [CrossRef]
- Yang, D.; Xing, D.; Yang, S.; Xiang, L. Fast full-view photoacoustic imaging by combined scanning with a linear transducer array. Opt. Express 2007, 15, 15566–15575. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 2005, 71, 016706. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarzadeh, M.; Yan, Y.; Mehrmohammadi, M.; Makkiabadi, B. Enhanced linear-array photoacoustic beamforming using modified coherence factor. J. Biomed. Opt. 2018, 23, 026005. [Google Scholar] [CrossRef]
- Mozaffarzadeh, M.; Periyasamy, V.; Pramanik, M.; Makkiabadi, B. Efficient nonlinear beamformer based on P ’th root of detected signals for linear-array photoacoustic tomography: Application to sentinel lymph node imaging. J. Biomed. Opt. 2018, 23, 121604. [Google Scholar]
- Matrone, G.; Savoia, A.S.; Caliano, G.; Magenes, G. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans. Med. Imaging 2015, 34, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Adabi, S.; Clayton, A.; Daveluy, S.; Mehregan, D.; Nasiriavanaki, M. Swept-Source Optical Coherence Tomography–Supervised Biopsy. Dermatol. Surg. 2018, 44, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, Z.; Mohammadian, N.; Tabar, M.; Manwar, R.; Avanaki, M. A Comparative Study of Optimization Algorithms for Wavefront Shaping. J. Innov. Opt. Health Sci. 2019, 12, 1942002. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Yang, J.-M.; Maslov, K.I.; Wong, T.T.; Li, L.; Huang, C.-H.; Zou, J.; Wang, L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 2015, 12, 407. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic brain imaging: From microscopic to macroscopic scales. Neurophotonics 2014, 1, 011003. [Google Scholar] [CrossRef]
- Zafar, M.; Manwar, R.; Kratkiewicz, K.; Hosseinzadeh, M.; Hariri, A.; Noei, S.; Avanaki, M. Photoacoustic signal enhancement using a novel adaptive filtering algorithm. In Photons Plus Ultrasound: Imaging and Sensing; International Society for Optics and Photonics: San Diego, CA, USA, 2019; p. 108785S. [Google Scholar]
- Zhang, E.; Laufer, J.; Pedley, R.; Beard, P. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 2009, 54, 1035. [Google Scholar] [CrossRef]
- Zhang, E.Z.; Laufer, J.; Beard, P. Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system. In Proceedings of the Biomedical Optics (BiOS), San Jose, CA, USA, 20 January 2007; p. 64370S. [Google Scholar]
- Zhao, L.; Yang, M.; Jiang, Y.; Li, C. Optical fluence compensation for handheld photoacoustic probe: An in vivo human study case. J. Innov. Opt. Health Sci. 2017, 10, 1740002. [Google Scholar] [CrossRef]
- Upputuri, P.K.; Pramanik, M. Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system. Biomed. Opt. Express 2015, 6, 4118–4129. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Mandal, S.; Buehler, A.; Deán-Ben, X.L.; Razansky, D.; Ntziachristos, V. Improving optoacoustic image quality via geometric pixel super-resolution approach. IEEE Trans. Med. Imaging 2015, 35, 812–818. [Google Scholar] [CrossRef]
- Mandal, S.; Nasonova, E.; Deán-Ben, X.L.; Razansky, D. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging. Photoacoustics 2014, 2, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ermilov, S.A.; Su, R.; Brecht, H.-P.; Oraevsky, A.A.; Anastasio, M.A. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 2010, 30, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Shao-Hua, W.; Chao, T.; Xiao-Jun, L. Effects of size and arrangement of virtual transducer on photoacoustic tomography. Chin. Phys. B 2013, 22, 074303. [Google Scholar]
- Haltmeier, M.; Zangerl, G. Spatial resolution in photoacoustic tomography: Effects of detector size and detector bandwidth. Inverse Probl. 2010, 26, 125002. [Google Scholar] [CrossRef]
- Drozdov, G.; Rosenthal, A. Analysis of negatively focused ultrasound detectors in optoacoustic tomography. IEEE Trans. Med. Imaging 2016, 36, 301–309. [Google Scholar] [CrossRef]
- Wang, K.; Anastasio, M.A. Photoacoustic and thermoacoustic tomography: Image formation principles. In Handbook of Mathematical Methods in Imaging; CRC Press: Boca Raton, FL, USA, 2015; pp. 1081–1116. [Google Scholar]
- Fayyaz, Z.; Mohammadian, N.; Salimi, F.; Fatima, A.; Tabar, M.R.R.; Avanaki, M.R. Simulated annealing optimization in wavefront shaping controlled transmission. Appl. Opt. 2018, 57, 6233–6242. [Google Scholar] [CrossRef]
- Manwar, R.; Zafar, M.; Podoleanu, A.; Avanaki, M. An Application of Simulated Annealing in Compensation of Nonlinearity of Scanners. Appl. Sci. 2019, 9, 1655. [Google Scholar] [CrossRef]
- Fayyaz, Z.; Salimi, F.; Mohammadian, N.; Fatima, A.; Tabar, M.R.R.; Avanaki, M.R. Wavefront shaping using simulated annealing algorithm for focusing light through turbid media. In Photons Plus Ultrasound: Imaging and Sensing; International Society for Optics and Photonics: San Diego, CA, USA, 2018; p. 104946M. [Google Scholar]
- Avanaki, M.R.N.; Khoshki, R.M.; Hojjatoleslami, S.A.; Podoleanu, A.G. Sensor-Less Aberration Correction in Optical Imaging Systems Using Blind Optimization; SPIE: San Diego, CA, USA, 2012; Volume 8351. [Google Scholar]
- Avanaki, M.R.N.; Bradu, A.; Podoleanu, A. Optimization of excitation of fiber Fabry–Perot tunable filters used in swept lasers using a phase-correction method. Appl. Opt. 2017, 56, 3378–3382. [Google Scholar] [CrossRef]
- Avanaki, M.R.N.; Bradu, A.; Trifanov, I.; Ribeiro, A.B.L.; Hojjatoleslami, A.; Podoleanu, A.G. Algorithm for Excitation Optimization of Fabry–Pérot Filters Used in Swept Sources. IEEE Photonics Technol. Lett. 2013, 25, 472–475. [Google Scholar] [CrossRef]
- Avanaki, M.R.; Hojjatoleslami, S.; Sarmadi, H.; Ebrahimpour, R.; Podoleanu, A.G. Genetic algorithm for optimization of optical systems. In Proceedings of the 2010 18th Iranian Conference on Electrical Engineering, Isfahan, Iran, 11–13 May 2010; pp. 172–176. [Google Scholar]
Authors | Configuration (Element No.) | Illumination Configuration | Application | Ref. |
---|---|---|---|---|
Ephrat et al. | Spherically sparse array (15) | Center illumination from bottom guided by mirror | Imaging moving phantoms | [41] |
Xiang et al. | Spherical array (192) | Cylindrically-shaped guided by fiber bundle | Monitoring needle-based drug delivery, hemodynamic changes and temperature variation | [42] |
Dean-Ben et al. | Spherical array (256) | Custom-made optical fiber bundle through central opening | Measuring hemodynamic and oxygen parameters | [26] |
Tang et al. | 2D rectangular array (3 × 64) | Center illumination from top using liquid light guide (LLG) | Measuring hemodynamic responses in the primary visual cortex | [43] |
Xia et al. | Linear array scanning (512) | Center illumination guided by fiber bundle | Hair phantom and ex-vivo mouse embryo imaging | [44] |
Gateau et al. | Linear array rotate/translate scanning (128) | Side illumination using fiber bundle | In-vitro | [45] |
Wang et al. | 2D matrix array (50 × 50) | Top illumination using fiber bundle | Mapping of the sentinel lymph node in rat model | [20] |
Wygant et al. | 2D CMUT array (synthetic aperture: 64 × 64) | Side illumination using diffuser | Phantom study | [46] |
Parameter | Value |
---|---|
Hemisphere radius | 6 cm |
Transducer active aperture/number | 12.7 mm/50 |
Optical fiber diameter/number—full-field illumination | 5 mm/40 |
Optical fiber numerical aperture—full-field illumination | 0.70 |
Optical fiber diameter/number—overhead illumination | 12 mm/1 |
Optical fiber numerical aperture—overhead illumination | 0.35 |
Parameter | Specifications | Cost ($) |
---|---|---|
Transducers | 50 single elements/512 elements | ~15K/~65K |
Amplifiers | Low-noise 24 dB/customized | ~7.5K/~25K |
DAQ | 56 channel/512 channel (or 64 channel with MUX) | ~20K/~50K |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratkiewicz, K.; Manwar, R.; Zafar, M.; Mohsen Ranjbaran, S.; Mozaffarzadeh, M.; de Jong, N.; Ji, K.; Avanaki, K. Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study. Appl. Sci. 2019, 9, 4505. https://doi.org/10.3390/app9214505
Kratkiewicz K, Manwar R, Zafar M, Mohsen Ranjbaran S, Mozaffarzadeh M, de Jong N, Ji K, Avanaki K. Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study. Applied Sciences. 2019; 9(21):4505. https://doi.org/10.3390/app9214505
Chicago/Turabian StyleKratkiewicz, Karl, Rayyan Manwar, Mohsin Zafar, Seyed Mohsen Ranjbaran, Moein Mozaffarzadeh, Nico de Jong, Kailai Ji, and Kamran Avanaki. 2019. "Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study" Applied Sciences 9, no. 21: 4505. https://doi.org/10.3390/app9214505
APA StyleKratkiewicz, K., Manwar, R., Zafar, M., Mohsen Ranjbaran, S., Mozaffarzadeh, M., de Jong, N., Ji, K., & Avanaki, K. (2019). Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study. Applied Sciences, 9(21), 4505. https://doi.org/10.3390/app9214505