The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Apparatus and Materials
2.2. Test Subjects
2.3. Experimental Procedure
2.3.1. Assessment of the Human Olfactory Response to the Odors of α- Pinene, β- Pinene, d- Limonene (Exp 1)
2.3.2. Effects of Mixed Monoterpenes on Human Psychology and Physiology (Exp 2)
3. Results
3.1. Effect of Individual α-Pinene, β-Pinene, and d-Limonene on Humans
3.2. The Effects of Mixtures of Monoterpenes on Human Psychology and Physiology
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Raw Counting Data | |||||
No. | Concentration (ppbv) | 2 | 3 | 5 | 7 |
Compounds | Number of participant | ||||
1 | α-pinene | 1 | 6 | 19 | 29 |
2 | β-pinene | 0 | 4 | 15 | 29 |
3 | d-limonene | 0 | 5 | 20 | 29 |
Ratio of Participant Could Smell MT Odor | |||||
No. | Concentration (ppbv) | 2 | 3 | 5 | 7 |
Compounds | Ratio of participant (%) | ||||
1 | α-pinene | 3.45 | 20.7 | 65.5 | 100 |
2 | β-pinene | 0.00 | 13.8 | 51.7 | 100 |
3 | d-limonene | 0.00 | 17.2 | 69.0 | 100 |
The Test of Preference between Three Tested MTs | |||||
No. | Compound | Male | Female | Total | Percentage (%) |
1 | α-pinene | 4 | 0 | 4 | 13.8 |
2 | β-pinene | 6 | 1 | 7 | 24.1 |
3 | d-limonene | 13 | 5 | 18 | 62.1 |
Order | Code | Age | Alpha Wave Intensity vs MT (ppbv) | Stress Index vs MT (ppbv) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 15 | 20 | 0 | 7 | 15 | 20 | ||||
1 | F1 | F1 | 21 | 12.70 | 13.57 | 14.05 | 15.90 | 40 | 39 | 36 | 32 |
2 | F2 | F2 | 21 | 12.55 | 12.58 | 13.40 | 16.39 | 57 | 51 | 35 | 24 |
3 | F3 | F3 | 21 | 12.93 | 14.34 | 18.53 | 20.12 | 44 | 42 | 40 | 40 |
4 | F4 | F4 | 21 | 10.40 | 13.02 | 13.91 | 15.87 | 51 | 47 | 42 | 36 |
5 | F5 | F5 | 22 | 9.95 | 15.20 | 15.86 | 16.25 | 39 | 37 | 33 | 28 |
6 | F6 | F6 | 22 | 10.72 | 13.41 | 19.25 | 20.55 | 57 | 56 | 44 | 41 |
7 | F7 | F7 | 21 | 10.17 | 10.22 | 10.74 | 11.61 | 52 | 43 | 40 | 40 |
8 | F8 | F8 | 21 | 8.09 | 10.07 | 10.74 | 11.24 | 50 | 38 | 39 | 39 |
9 | F9 | F9 | 21 | 6.07 | 6.74 | 10.61 | 10.88 | 42 | 41 | 40 | 39 |
10 | F10 | F10 | 26 | 10.42 | 10.39 | 11.87 | 13.31 | 43 | 33 | 34 | 32 |
11 | F11 | F11 | 21 | 8.08 | 9.05 | 9.13 | 9.38 | 35 | 32 | 26 | 25 |
12 | F12 | F12 | 23 | 10.09 | 10.03 | 11.27 | 11.99 | 47 | 37 | 35 | 29 |
13 | F13 | F13 | 30 | 11.03 | 13.49 | 13.95 | 14.96 | 44 | 40 | 39 | 35 |
14 | F14 | F14 | 23 | 5.85 | 7.20 | 9.20 | 10.93 | 41 | 40 | 38 | 38 |
15 | F15 | F15 | 34 | 16.33 | 17.20 | 20.70 | 21.18 | 56 | 43 | 34 | 34 |
16 | M1 | M1 | 24 | 8.06 | 11.17 | 12.76 | 13.34 | 48 | 48 | 46 | 44 |
17 | M2 | M2 | 25 | 8.52 | 12.58 | 13.32 | 13.94 | 43 | 41 | 40 | 37 |
18 | M3 | M3 | 25 | 4.82 | 6.69 | 9.60 | 10.03 | 54 | 43 | 41 | 37 |
19 | M4 | M4 | 24 | 9.70 | 14.76 | 15.46 | 17.34 | 48 | 44 | 41 | 40 |
20 | M5 | M5 | 23 | 7.50 | 12.61 | 13.84 | 15.30 | 42 | 40 | 39 | 35 |
21 | M6 | M6 | 24 | 7.99 | 7.95 | 11.92 | 18.93 | 43 | 41 | 40 | 40 |
22 | M7 | M7 | 24 | 12.84 | 13.94 | 16.90 | 19.98 | 43 | 39 | 38 | 37 |
23 | M8 | M8 | 23 | 9.31 | 11.13 | 11.93 | 13.94 | 48 | 42 | 39 | 37 |
24 | M9 | M9 | 23 | 12.41 | 14.92 | 18.06 | 19.72 | 37 | 36 | 35 | 31 |
25 | M10 | M10 | 24 | 13.17 | 13.29 | 14.89 | 21.31 | 42 | 41 | 38 | 36 |
26 | M11 | M11 | 23 | 10.92 | 11.12 | 11.85 | 11.94 | 45 | 40 | 29 | 24 |
27 | M12 | M12 | 25 | 6.15 | 8.30 | 9.19 | 11.21 | 45 | 39 | 38 | 31 |
28 | M13 | M13 | 23 | 5.84 | 7.56 | 9.91 | 13.14 | 39 | 36 | 32 | 31 |
29 | M14 | M14 | 24 | 5.61 | 7.68 | 8.26 | 9.00 | 56 | 49 | 45 | 36 |
30 | M15 | M15 | 26 | 15.97 | 16.28 | 19.13 | 22.26 | 54 | 43 | 42 | 34 |
No. | Code | Before inhaling MT | After Inhaling MT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Very Stable | Stable | Normal | Unstable | Very Unstable | Very Stable | Stable | Normal | Unstable | Very Unstable | ||
1 | F1 | x | x | ||||||||
2 | F2 | x | x | ||||||||
3 | F3 | x | x | ||||||||
4 | F4 | x | x | ||||||||
5 | F5 | x | x | ||||||||
6 | F6 | x | x | ||||||||
7 | F7 | x | x | ||||||||
8 | F8 | x | x | ||||||||
9 | F9 | x | x | ||||||||
10 | F10 | x | x | ||||||||
11 | F11 | x | x | ||||||||
12 | F12 | x | x | ||||||||
13 | F13 | x | x | ||||||||
14 | F14 | x | x | ||||||||
15 | F15 | x | x | ||||||||
16 | M1 | x | x | ||||||||
17 | M2 | x | x | ||||||||
18 | M3 | x | x | ||||||||
19 | M4 | x | x | ||||||||
20 | M5 | x | x | ||||||||
21 | M6 | x | x | ||||||||
22 | M7 | x | x | ||||||||
23 | M8 | x | x | ||||||||
24 | M9 | x | x | ||||||||
25 | M10 | x | x | ||||||||
26 | M11 | x | x | ||||||||
27 | M12 | x | x | ||||||||
28 | M13 | x | x | ||||||||
29 | M14 | x | x | ||||||||
30 | M15 | x | x |
References
- Li, Q.; Nakadai, A.; Matsushima, H.; Miyazaki, Y.; Krensky, A.M.; Kawada, T.; Morimoto, K. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 2006, 28, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Nakadai, A.; Inagaki, H.; Katsumata, M.; Shimizu, T.; Hirata, Y.; Hirata, K.; Suzuki, H.; Miyazaki, Y.; et al. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2007, 20, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.J.; Wakayama, Y.; et al. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010, 15, 9–17. [Google Scholar] [CrossRef]
- Geron, C.D.; Pierce, T.E.; Guenther, A.B. Reassessment of biogenic volatile organic compound emissions in the Atlanta area. Atmos. Environ. 1995, 29, 1573–1578. [Google Scholar] [CrossRef]
- Bouvier-Brown, N.C.; Goldstein, A.H.; Gilman, J.B.; Kuster, W.C.; De Gouw, J.A. In-situ ambient quantification of monoterpenes, sesquiterpenes and related oxygenated compounds during BEARPEX 2007: Implications for gas-and particle-phase chemistry. Atmos. Chem. Phys. 2009, 9, 5505–5518. [Google Scholar] [CrossRef]
- Hakola, H.; Laurila, T.; Rinne, J.; Puhto, K. The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmos. Environ. 2000, 34, 4971–4982. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Chang, K.-H.; Wang, L.-T. Ambient concentrations of biogenic volatile organic compounds in Southern Taiwan. Chemosphere 1999, 39, 731–744. [Google Scholar] [CrossRef]
- Kalabokas, P.; Bartzis, J.G.; Bomboi, T.; Ciccioli, P.; Cieslik, S.; Dlugi, R.; Foster, P.; Kotzias, D.; Steinbrecher, R. Ambient atmospheric trace gas concentrations and meteorological parameters during the first BEMA measuring campaign on May 1994 at Castelporziano, Italy. Atmos. Environ. 1997, 31, 67–77. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Kuhn, U.; Wolf, A.; Andreae, M.O.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Guenther, A.; Greenberg, J.; De Castro Vasconcellos, P.; et al. Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos. Environ. 2000, 34, 4063–4072. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Kim, K.H. Seasonal variations of Monoterpene concentrations in a Pine forest in Florida, USA. J. Korean Soc. Atmos. Environ. 2002, 18, 175–180. [Google Scholar]
- Saxton, J.E.; Lewis, A.C.; Kettlewell, J.H.; Ozel, M.Z.; Gogus, F.; Boni, Y.; Korogone, S.O.U.; Serça, D. Isoprene and monoterpene measurements in a secondary forest in northern Benin. Atmos. Chem. Phys. 2007, 7, 4095–4106. [Google Scholar] [CrossRef] [Green Version]
- Tani, A.; Nozoe, S.; Aoki, M.; Hewitt, C.N. Monoterpene fluxes measured above a Japanese red pine forest at Oshiba plateau, Japan. Atmos. Environ. 2002, 36, 3391–3402. [Google Scholar] [CrossRef]
- Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME. Atmos. Meas. Tech. 2010, 3, 1615–1627. [Google Scholar] [CrossRef] [Green Version]
- Oh, G.Y.; Park, G.H.; Kim, I.S.; Bae, J.S. Comparison of Major Monoterpene Concentrations in the Ambient Air of South Korea Forests. J. Korean. Soc. 2010, 99, 698–705. [Google Scholar]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, distribution and elimination of alpha-pinene in man after exposure by inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef]
- Komori, T.; Fujiwara, R.; Tanida, M.; Nomura, J.; Yokoyama, M.M. Effects of citrus fragrance on immune function and depressive states. Neuroimmunomodulation 1995, 2, 174–180. [Google Scholar] [CrossRef]
- Li, Q.; Nakadai, A.; Ishizaki, M.; Morimoto, K.; Ueda, A.; Krensky, A.M.; Kawada, T. Dimethyl 2,2-dichlorovinyl phosphate (DDVP) markedly decreases the expression of perforin, granzyme A and granulysin in human NK-92CI cell line. Toxicology 2005, 213, 107–116. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Kawada, T. DDVP markedly decreases the expression of granzyme B and granzyme 3/K in human NK cells. Toxicology 2008, 243, 294–302. [Google Scholar] [CrossRef]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Li, Y.J.; Wakayama, Y.; et al. A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects. J. Biol. Regul. Homeost. Agents 2008, 22, 45–55. [Google Scholar]
- Wolkoff, P.; Nielsen, G.D. Effects by inhalation of abundant fragrances in indoor air—An overview. Environ. Int. 2017, 101, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Tsunetsugu, Y.; Park, B.J.; Miyazaki, Y. Trends in research related to “shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Dayawansa, S.; Umeno, K.; Takakura, H.; Hori, E.; Tabuchi, E.; Nagashima, Y.; Oosu, H.; Yada, Y.; Suzuki, T.; Ono, T.; et al. Autonomic responses during inhalation of natural fragrance of “Cedrol” in humans. Auton. Neurosci. Basic Clin. 2003, 108, 79–86. [Google Scholar] [CrossRef]
- Hiruma, T.; Yabe, H.; Sato, Y.; Sutoh, T.; Kaneko, S. Differential effects of the hiba odor on CNV and MMN. Biol. Psychol. 2002, 61, 321–331. [Google Scholar] [CrossRef]
- Itai, T.; Amayasu, H.; Kuribayashi, M.; Kawamura, N.; Okada, M.; Momose, A.; Tateyama, T.; Narumi, K.; Uematsu, W.; Kaneko, S. Psychological effects of aromatherapy on chronic hemodialysis patients. Psychiatry Clin. Neurosci. 2000, 54, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Miyazak, Y.; Morikawa, T.; Yamamoto, N. Effect of wooden odoriferous substance on humans. Jpm. J. Physiol. Anthropol. 1999, 4, 49–50. [Google Scholar]
- Miyazaki, Y.; Motohashi, Y.; Kobayyashi, S. Changes in mood by inhalation of essential oils in humansII. Effect of essential oils on blood-pressure, heart-rate, R-R intervals, performance, sensory evaluation and POMS. Mokuzai Gakkaishi 1992, 38, 909–913. [Google Scholar]
- Tsunetsugu, Y.; Morikawa, T.; Miyazak, Y. The relaxing effects of the smell of wood. Wood Ind. 2005, 60, 598–602. [Google Scholar]
- Joung, D.; Song, C.; Ikei, H.; Okuda, T.; Igarashi, M.; Koizumi, H.; Park, B.J.; Yamaguchi, T.; Takagaki, M.; Miyazaki, Y. Physiological and psychological effects of olfactory stimulation with D-Limonene. Adv. Hortic. Sci. 2014, 2, 90–94. [Google Scholar]
- Lim, J.H.; Kim, J.C.; Kim, K.J.; Son, Y.S.; Sunwoo, Y.; Han, J.S. Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 2008, 73, 470–478. [Google Scholar] [CrossRef]
- Ghimenti, S.; Tabucchi, S.; Lomonaco, T.; Di Francesco, F.; Fuoco, R.; Onor, M.; Lenzi, S.; Trivella, M.G. Monitoring breath during oral glucose tolerance tests. J. Breath Res. 2013, 7, 017115. [Google Scholar] [CrossRef]
- Biagini, D.; Lomonaco, T.; Ghimenti, S.; Bellagambi, F.G.; Onor, M.; Scali, M.C.; Barletta, V.; Marzilli, M.; Salvo, P.; Trivella, M.G.; et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J. Breath Res. 2017, 11, 047110. [Google Scholar] [CrossRef]
- U.S. EPA. Reference Guide to Odor Thresholds for Hazardous Air Pollutants Listed in the Clean Air Act Amendments of 1990; U.S. EPA: Washington, DC, USA, 1990.
- Ghimenti, S.; Tabucchi, S.; Bellagambi, F.G.; Lomonaco, T.; Onor, M.; Trivella, M.G.; Fuoco, R.; Di Francesco, F. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography–mass spectrometry for exposure assessment of hospital staff. J. Pharm. Biomed. Anal. 2015, 106, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Empson, J. Human Brainwaves: The Psychological Significance of the Electroencephalogram; Palgrave Macmillan: London, UK, 1986; ISBN 978-1-349-18312-8. [Google Scholar]
- Oliveira-Pinto, A.V.; Santos, R.M.; Coutinho, R.A.; Oliveira, L.M.; Santos, G.B.; Alho, A.T.L.; Leite, R.E.P.; Farfel, J.M.; Suemoto, C.K.; Grinberg, L.T.; et al. Sexual dimorphism in the human olfactory bulb: Females have more neurons and glial cells than males. PLoS ONE 2014, 9, e111733. [Google Scholar] [CrossRef] [PubMed]
- Cain, W.S.; Schmidt, R.; Wolkoff, P. Olfactory detection of ozone and d-limonene: Reactants in indoor spaces. Indoor Air 2007, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y. Odor Intensity and Odor Threshold Value. J. Jpn. Air Clean. Assoc. 2003, 41, 17–25. [Google Scholar]
- Doty, R.L.; Cometto-Muñiz, J.E.; Jalowayski, A.A.; Dalton, P.; Kendal-Reed, M.; Hodgson, M. Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit. Rev. Toxicol. 2004, 34, 85–142. [Google Scholar] [CrossRef] [PubMed]
Site | α-Pinene | β-Pinene | d-Limonene | 3-Carene | Myrcene | Camphene | etc. | ΣM. Terpene | Ref. |
---|---|---|---|---|---|---|---|---|---|
Castelporziano, Italy | 97 (33%) | 36 (12%) | 162 (55%) | bdl | bdl | bdl | 0 | 295 | [8,9] |
Chiaotou, Taiwan | 100 (28%) | 253 (72%) | bdl | bdl | bdl | bdl | 0 | 353 | [8] |
Balbina, Amazonia, Brazil | 1100 (44%) | 500 (20%) | 350 (14%) | bdl | 50 (2%) | 100 (4%) | 400 (16%) | 2500 | [10] |
Ilomantsi, Finland | 100 (64%) | 16 (10%) * | 10 (6%) | 22 (14%) | - | 2 (1%) | 6 (4%) | 156 | [7] |
Austin Cary Forest, FL, USA | 125 (59%) | 86 (41%) | bdl | bdl | bdl | bdl | bdl | 211 | [11] |
Blodgett Forest, CA, USA | 104 (14%) | 311 (43%) | 76 (11%) ** | 210 (29%) | 10 (1%) | 6 (1%) | 5 (1%) | 722 | [6] |
Mainz, Germany | 117 (28%) | 98 (23%) | 74 (18%) | 49 (12%) | 24 (6%) | bdl | 59 (14%) | 421 | [14] |
Djougou, Benin | 300 (55%) | 200 (36%) | 50 (9%) ** | bdl | bdl | bdl | 0 | 550 | [12] |
Oshiba plareau, Japan | 70 (41%) | 26 (15%) | 74 (44%) ** | bdl | bdl | bdl | 0 | 170 | [13] |
Jönköping, Sweden | 9730 (50%) | 320 (2%) | 1300 (7%) | 7000 (36%) | 210 (1%) | 700 (4%) | 340 (2%) | 19,600 | [5] |
Odae Chanamu forest, Korea | 133 (45%) | 55 (19%) | 61 (21%) | bdl | bdl | 44 (15%) | bdl | 293 | [15] |
Seonam temple forest, Korea | 32 (31%) | 38 (37%) * | 13 (13%) | bdl | - | 7 (7%) | 11 (11%) | 107 | [15] |
Juknokwon forest, Korea | 77 (27%) | 103 (36%) * | 74 (26%) | bdl | - | 12 (4%) | 24 (8%) | 291 | [15] |
1. What is your gender? ① Male ② Female |
2. Do you smoke? ① Yes ② No |
3. How is your current physical condition? ① Excellent ② Fine ③ Good ④ Not good ⑤ Not very good |
4. What do you think about sample 1 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
5. What do you think about sample 2 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
6. What do you think about sample 3 smell? ① Very refresh ② Refresh ③ Normally ④ Uncomfortable ⑤ Very uncomfortable |
7. What level can you smell clearly? Sample 1: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv Sample 2: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv Sample 3: ① 2ppbv ② 3ppbv ③ 5ppbv ④ 7ppbv |
8. Which sample do you think has the best odor? ① Sample 1 ② Sample 2 ③ Sample 3 |
9. Which sample has the worst odor among the three kinds of samples? ① Sample 1 ② Sample 2 ③ Sample 3 |
10. After the experiment, how is your physical condition? ① Excellent ② Fine ③ Good ④ Not good ⑤ Not very good |
11. What do you think about your psychology state (stress, anger, sleepy) after smelling? ① Very stable ② Stable ③ Normally ④ Unstable ⑤ Very Unstable |
12. Please write if you are suffering from diseases or symptoms. (Example: Nose allergies, Sinusitis, etc.) |
13. Please write a comment about the experiments. |
No. | Total Concentration (ppbv) | Mixing Ratio | ||
---|---|---|---|---|
α-Pinene | β-Pinene | d-Limonene | ||
1 | 0 | 0.0 | 0.0 | 0.0 |
2 | 7 | 1.0 | 0.5 | 0.5 |
3 | 15 | 1.0 | 0.5 | 0.5 |
4 | 20 | 1.0 | 0.5 | 0.5 |
1. What is your gender? ① Male ② Female |
2. Do you smoke? ① Yes ② No |
3. Currently, do you have rhinitis symptoms? ① Yes ② No |
4. How is your psychological stability condition? ① Very comfortable ② Comfortable ③ Normal ④ Uncomfortable ⑤ Very uncomfortable |
5. After the experiment, how is your psychological stability condition? ① Very comfortable ② Comfortable ③ Normal ④ Uncomfortable ⑤ Very uncomfortable |
6. Please write if you are suffering from diseases or symptoms. (Ex: Nose allergies, Sinusitis, etc.) |
7. Please write a comment about the experiments. |
Concentration (ppbv) | Ratio of Participants % (Ratio of Gender %) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α-Pinene | β-Pinene | d-Limonene | |||||||
Male | Female | Total | Male | Female | Total | Male | Female | Total | |
2 | 0.00 (0.00) | 3.45 (16.7) | 3.45 | 0.00 (0.00) | 0.00 (0.00) | 0.00 | 0.00 (0.00) | 0.00 (0.00) | 0.00 |
3 | 17.2 (21.7) | 3.45 (16.7) | 20.7 | 10.3 (13.0) | 3.45 (16.7) | 13.8 | 13.8 (17.4) | 3.45 (16.7) | 17.2 |
5 | 44.8 (56.5) | 20.7 (100) | 65.5 | 31.0 (39.1) | 20.7 (100) | 51.7 | 48.3 (60.9) | 20.7 (100) | 69.0 |
7 | 79.3 (100) | 20.7 (100) | 100 | 79.3 (100) | 20.7 (100) | 100 | 79.3 (100) | 20.7 (100) | 100 |
Parameter | Gender | n | Background | 7 ppbv | 15 ppbv | 20 ppbv |
---|---|---|---|---|---|---|
Alpha wave | Male | 3 | 9.3 (± 3.2) | 11.3 (± 3.1) | 13.1 (± 3.3) | 15.4 (± 4.2) |
Female | 3 | 10.4 (± 2.7) | 11.8 (± 3.0) | 13.5 (± 3.6) | 14.7 (± 3.8) | |
p-value 1 | 0.319 | 0.696 | 0.746 | 0.626 | ||
Stress index | Male | 3 | 45.8 (± 5.5) | 41.5 (± 3.7) | 38.9 (± 4.4) | 35.3 (± 4.8) |
Female | 3 | 46.5 (± 7.0) | 41.3 (± 6.3) | 37.0 (± 4.4) | 34.1 (± 5.6) | |
p-value 1 | 0.752 | 0.916 | 0.257 | 0.533 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-C.; Dinh, T.-V.; Oh, H.-K.; Son, Y.-S.; Ahn, J.-W.; Song, K.-Y.; Choi, I.-Y.; Park, C.-R.; Szulejko, J.E.; Kim, K.-H. The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Appl. Sci. 2019, 9, 4507. https://doi.org/10.3390/app9214507
Kim J-C, Dinh T-V, Oh H-K, Son Y-S, Ahn J-W, Song K-Y, Choi I-Y, Park C-R, Szulejko JE, Kim K-H. The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Applied Sciences. 2019; 9(21):4507. https://doi.org/10.3390/app9214507
Chicago/Turabian StyleKim, Jo-Chun, Trieu-Vuong Dinh, Hong-Keun Oh, Youn-Suk Son, Ji-Won Ahn, Kyu-Yong Song, In-Young Choi, Chan-Ryul Park, JanJan E. Szulejko, and Ki-Hyun Kim. 2019. "The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels" Applied Sciences 9, no. 21: 4507. https://doi.org/10.3390/app9214507
APA StyleKim, J. -C., Dinh, T. -V., Oh, H. -K., Son, Y. -S., Ahn, J. -W., Song, K. -Y., Choi, I. -Y., Park, C. -R., Szulejko, J. E., & Kim, K. -H. (2019). The Potential Benefits of Therapeutic Treatment Using Gaseous Terpenes at Ambient Low Levels. Applied Sciences, 9(21), 4507. https://doi.org/10.3390/app9214507