A Perturbative View from the Master Equation: Electromagnetically Induced Transparency Revisited
Abstract
:1. Introduction
2. The Model
3. Examples: Comparison of Our Model with a Set of Multilevel Structures
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
EIT | electromagnatically induced transparency |
References
- Boller, K.-J.; Glu, A.I.; Harris, S.E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 1991, 66, 2593–2596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.E.; Field, J.E.; Kasapi, A. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 1992, 46, R29–R32. [Google Scholar] [CrossRef] [PubMed]
- Gea-Banacloche, J.; Li, Y.-Q.; Jin, S.-Z.; Xiao, M. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A 1995, 51, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Xiao, M. Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms. Phys. Rev. A 1995, 51, R2703–R2706. [Google Scholar] [CrossRef] [PubMed]
- Fulton, D.J.; Shepherd, S.; Moseley, R.R.; Sinclair, B.D.; Dunn, M.H. Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems. Phys. Rev. A 1995, 52, 2302–2311. [Google Scholar] [CrossRef] [PubMed]
- Paspalakis, E.; Knight, P.L. Electromagnetically induced transparency and controlled group velocity in a multilevel system. Phys. Rev. A 2002, 66, 015802. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, X. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 2005, 71, 053806. [Google Scholar] [CrossRef]
- Petrosyan, D.; Otterbach, J.; Fleischhauer, M. Electromagnetically Induced Transparency with Rydberg Atoms. Phys. Rev. Lett. 2011, 107, 213601. [Google Scholar] [CrossRef]
- Mirza, A.B.; Singh, S. Wave-vector mismatch effects in electromagnetically induced transparency in Y-type systems. Phys. Rev. A 2012, 85, 053837. [Google Scholar] [CrossRef]
- Yan, D.; Liu, Y.-M.; Bao, Q.-Q.; Fu, C.-B.; Wu, J.-H. Electromagnetically induced transparency in an inverted-Y system of interacting cold atoms. Phys. Rev. A 2012, 86, 023828. [Google Scholar] [CrossRef]
- Harris, S.E. Lasers without inversion: Interference of lifetime-broadened resonances. Phys. Rev. Lett. 1989, 62, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Fleischhauer, M.; Lukin, M.D. Dark-State Polaritons in Electromagnetically Induced Transparency. Phys. Rev. Lett. 2000, 84, 5094–5097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.; Boyd, R.W.; Stroud, C.R., Jr.; Bennink, R.S.; Aronstein, D.L.; Park, Q.H. Absorptionless self-phase-modulation via dark-state electromagnetically induced transparency. Phys. Rev. A 2001, 65, 013810. [Google Scholar] [CrossRef]
- Qi, J.; Lyyra, A.M. Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system. Phys. Rev. A 2006, 73, 043810. [Google Scholar] [CrossRef] [Green Version]
- Hau, L.V.; Harris, S.E.; Dutton, Z.; Behroozi, C.H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999, 397, 594–598. [Google Scholar] [CrossRef]
- Budker, D.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V. Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Phys. Rev. Lett. 1999, 83, 1767–1770. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.F.; Fleischhauer, A.; Mair, A.; Walsworth, R.L.; Lukin, M.D. Storage of Light in Atomic Vapor. Phys. Rev. Lett. 2001, 86, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Lvovsky, A.I.; Sanders, B.C.; Tittel, W. Optical quantum memory. Nat. Photonics 2009, 3, 706–714. [Google Scholar] [CrossRef]
- Souza, J.A.; Figueroa, E.; Chibani, H.; Villas-Boas, C.J.; Rempe, G. Coherent Control of Quantum Fluctuations Using Cavity Electromagnetically Induced Transparency. Phys. Rev. Lett. 2013, 111, 113602. [Google Scholar] [CrossRef]
- Shomroni, I.; Rosenblum, S.; Lovsky, Y.; Bechler, O.; Guendelman, G.; Dayan, B. All-optical routing of single photons by a one-atom switchcontrolled by a single photon. Science 2014, 345, 903–906. [Google Scholar] [CrossRef]
- Harris, S.E.; Hau, L.V. Nonlinear Optics at Low Light Levels. Phys. Rev. Lett. 1999, 82, 4611–4614. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.A.; Cabral, L.; Oliveira, R.R.; Villas-Boas, C.J. Electromagnetically-induced-transparency-related phenomena and their mechanical analogs. Phys. Rev. A 2015, 92, 023818. [Google Scholar] [CrossRef]
- Xiao, Y.-F.; Zou, X.-B.; Jiang, W.; Chen, Y.-L.; Guo, G.-C. Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems. Phys. Rev. A 2007, 75, 063833. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Liu, X.; Mao, D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 2012, 85, 053803. [Google Scholar] [CrossRef]
- Ciret, C.; Alonzo, M.; Coda, V.; Rangelov, A.A.; Montemezzani, G. Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides. Phys. Rev. A 2013, 88, 013840. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 2010, 81, 041803. [Google Scholar] [CrossRef]
- Dantan, A.; Albert, M.; Drewsen, M. All-cavity electromagnetically induced transparency and optical switching: Semiclassical theory. Phys. Rev. A 2012, 85, 013840. [Google Scholar] [CrossRef]
- Turek, Y.; Li, Y.; Sun, C.P. Electromagnetically-induced-transparency—Like phenomenon with two atomic ensembles in a cavity. Phys. Rev. A 2013, 88, 053827. [Google Scholar] [CrossRef]
- Wang, H.; Gu, X.; Liu, Y.-X.; Miranowicz, A.; Nori, F. Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 2014, 90, 023817. [Google Scholar] [CrossRef]
- Lin, G.W.; Qi, Y.H.; Lin, X.M.; Niu, Y.P.; Gong, S.Q. Strong photon blockade with intracavity electromagnetically induced transparency in a blockaded Rydberg ensemble. Phys. Rev. A 2015, 92, 043842. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Burlington, VT, USA, 2008. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X. A Perturbative View from the Master Equation: Electromagnetically Induced Transparency Revisited. Appl. Sci. 2019, 9, 4512. https://doi.org/10.3390/app9214512
Wang X. A Perturbative View from the Master Equation: Electromagnetically Induced Transparency Revisited. Applied Sciences. 2019; 9(21):4512. https://doi.org/10.3390/app9214512
Chicago/Turabian StyleWang, Xin. 2019. "A Perturbative View from the Master Equation: Electromagnetically Induced Transparency Revisited" Applied Sciences 9, no. 21: 4512. https://doi.org/10.3390/app9214512
APA StyleWang, X. (2019). A Perturbative View from the Master Equation: Electromagnetically Induced Transparency Revisited. Applied Sciences, 9(21), 4512. https://doi.org/10.3390/app9214512