Self-Injection Locking of a Distributed Feedback Laser Diode Using a High-Finesse Fabry-Perot Microcavity
Abstract
:1. Introduction
2. The Fabry-Perot Microcavity
3. Self-injection Locking of a DFB Laser
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Layer | Material | Thickness (nm) |
---|---|---|
1 | SiO2 | 84.90 |
2 | Ta2O5 | 79.82 |
3 | SiO2 | 289.63 |
4 | Ta2O5 | 189.36 |
5 | SiO2 | 269.93 |
6 | Ta2O5 | 187.44 |
7 | SiO2 | 269.10 |
8 | Ta2O5 | 187.15 |
9 | SiO2 | 268.84 |
10 | Ta2O5 | 187.12 |
11 | SiO2 | 268.80 |
12 | Ta2O5 | 187.11 |
13 | SiO2 | 268.96 |
14 | Ta2O5 | 161.89 |
15 | SiO2 | 81.04 |
References
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photon. 2015, 7, 168–240. [Google Scholar] [CrossRef] [PubMed]
- Pöllinger, M.; O’Shea, D.; Warken, F.; Rauschenbeutel, A. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 2009, 103, 053901. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kopka, P.; Voges, E. Low-loss fiber-matched low temperature PECVD waveguides with small-core dimensions for optical communication systems. IEEE Photon. Technol. Lett. 1997, 9, 1238–1240. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kopka, P.; Voges, E. Thermo-optical digital switch arrays in silica-on-silicon with defined zerovoltage state. J. Lightwave Technol. 1998, 16, 395–400. [Google Scholar] [CrossRef]
- Pennetta, R.; Xie, S.; Russell, P.J. Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump. Phys. Rev. Lett. 2016, 117, 273901. [Google Scholar] [CrossRef]
- Xie, S.; Pennetta, R.; Russell, P.S. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica 2016, 3, 277–282. [Google Scholar] [CrossRef]
- Gleine, W.; Muller, J. Laser trimming of SiON components for integrated optics. J. Lightwave Technol. 1991, 9, 1626–1629. [Google Scholar] [CrossRef]
- Offrein, B.J.; Bona, G.L.; Germann, R.; Krommendijk, F.; Massarek, I.; Salemink, H.W.M. High contrast and low loss SiON optical waveguides by PECVD. In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, November 1996; pp. 290–293. [Google Scholar]
- Svalgaard, M.; Kristensen, M. Directly UV written silica-on-silicon planar waveguides with low loss. Electron. Lett. 1997, 33, 861–863. [Google Scholar]
- Zeltner, R.; Pennetta, R.; Xie, S.; Russell, P.S. Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt. Lett. 2018, 43, 1479–1482. [Google Scholar] [CrossRef]
- Xie, S.; Tolstik, N.; Travers, J.C.; Sorokin, E.; Caillaud, C.; Troles, J.; Russell, P.S.; Sorokina, I.T. Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser. Opt. Express 2016, 24, 12406–12413. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Savchenkov, A.A.; Matsko, A.B.; Maleki, L. Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities. Phys. Rev. Lett. 2004, 92, 043903. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.U. Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator. Phys. Rev. Lett. 2010, 104, 153901. [Google Scholar] [Green Version]
- Kippenberg, T.J. Viewpoint: Second-harmonic generation in microresonators through natural phase matching. Physics 2010, 3, 32. [Google Scholar] [CrossRef]
- Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature 2007, 450, 1214–1217. [Google Scholar] [CrossRef] [Green Version]
- Savchenkov, A.A.; Matsko, A.B.; Mohageg, M.; Strekalov, D.V.; Maleki, L. Parametric oscillations in a whispering gallery resonator. Opt. Lett. 2007, 32, 157. [Google Scholar] [CrossRef]
- Fürst, J.U.; Strekalov, D.V.; Elser, D.; Aiello, A.; Andersen, U.L.; Marquardt, C.; Leuchs, G. Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 2010, 105, 263904. [Google Scholar] [CrossRef]
- Beckmann, T.; Linnenbank, H.; Steigerwald, H.; Sturman, B.; Haertle, D.; Buse, K.; Breunig, I. Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 2011, 106, 143903. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044. [Google Scholar] [CrossRef]
- Alford, W.J.; Smith, A.V. Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: A test of Miller wavelength scaling. J. Opt. Soc. Am. B 2001, 18, 524–533. [Google Scholar] [CrossRef]
- Akbari, R.; Major, A. Optical, spectral and phase matching properties of BIBO, BBO and LBO crystals for optical parametric oscillation in the visible and near infrared wavelength ranges. Laser Phys. 2013, 23, 035401. [Google Scholar] [CrossRef]
- Yoshida, H.; Lu, Y.; Nakayama, H.; Hirohashi, M. Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity. J. Alloy. Compd. 2009, 475, 383–386. [Google Scholar] [CrossRef]
- Chen, Q.; Hubbard, G.; Shields, P.A.; Liu, C.; Allsopp, D.W.E.; Wang, W.N.; Abbott, S. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 2009, 94, 263118. [Google Scholar] [CrossRef]
- Liang, W.; Chenko, V.S.; Eliyahu, D.; Savchenkov, A.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 2015, 6, 7371. [Google Scholar] [CrossRef]
- Lewoczko, A.W.; Pyrlik, C.; Häger, J.; Schwertfeger, S.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt. Express 2015, 23, 9705–9709. [Google Scholar] [CrossRef]
- Siciliani de Cumis, M.; Borri, S.; Insero, G.; Bartalini, S.; Pastor, P.C.; Mazzotti, D.; Galli, I.; Giusfredi, G.; Santambrogio, G.; D’Ambrosio, D.; et al. Microcavity-Stabilized Quantum Cascade Laser. Laser Photon. Rev. 2016, 10, 153–157. [Google Scholar] [CrossRef]
- Gallego, J.; Ghosh, S.; Alavi, S.K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L. High-finesse fiber Fabry–Perot cavities: Stabilization and mode matching analysis. Appl. Phys. B 2016, 122, 47. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, M.; Duan, F.; Xie, S.; Liao, Y. Measurement of the phase shift between intensity and frequency modulations within DFB-LD and its influences on PGC demodulation in a fiber-optic sensor system. Appl. Opt. 2013, 52, 7194–7199. [Google Scholar] [CrossRef]
- Xie, Z.D.; Lv, X.J.; Liu, Y.H.; Ling, W.; Wang, Z.L.; Fan, Y.X.; Zhu, S.N. Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett. 2011, 106, 083901. [Google Scholar] [CrossRef]
- Liu, F.; Xie, S.; Qiu, X.; Wang, X.; Cao, S.; Qin, M.; He, X.; Xie, B.; Zheng, X.; Zhang, M. Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation. J. Lightwave Technol. 2016, 34, 5453–5461. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, M.; Li, Y.; Liao, Y. Positioning error reduction technique using spectrum reshaping for distributed fiber interferometric vibration sensor. J. Lightwave Technol. 2012, 30, 3520–3524. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Xie, Z.; Zhu, S.-N. Self-Injection Locking of a Distributed Feedback Laser Diode Using a High-Finesse Fabry-Perot Microcavity. Appl. Sci. 2019, 9, 4616. https://doi.org/10.3390/app9214616
Wei X, Xie Z, Zhu S-N. Self-Injection Locking of a Distributed Feedback Laser Diode Using a High-Finesse Fabry-Perot Microcavity. Applied Sciences. 2019; 9(21):4616. https://doi.org/10.3390/app9214616
Chicago/Turabian StyleWei, Xing, ZhenDa Xie, and Shi-Ning Zhu. 2019. "Self-Injection Locking of a Distributed Feedback Laser Diode Using a High-Finesse Fabry-Perot Microcavity" Applied Sciences 9, no. 21: 4616. https://doi.org/10.3390/app9214616
APA StyleWei, X., Xie, Z., & Zhu, S. -N. (2019). Self-Injection Locking of a Distributed Feedback Laser Diode Using a High-Finesse Fabry-Perot Microcavity. Applied Sciences, 9(21), 4616. https://doi.org/10.3390/app9214616