A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dynamic Characterization
3.2. Effects on The Vibrational Behavior.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, H.G.; Lee, J. Damping mechanism model for fatigue testing of a full-scale composite wind turbine blade, Part 2: Application of fairing. Compos. Struct. 2018, 202, 1121–1125. [Google Scholar] [CrossRef]
- Lee, H.G.; Lee, J. Damping mechanism model for fatigue testing of a full-scale composite wind turbine blade, Part 1: Modeling. Compos. Struct. 2018, 202, 1216–1228. [Google Scholar] [CrossRef]
- Henning, F.; Kärger, L.; Dörr, D.; Schirmaier, F.J.; Seuffert, J.; Bernath, A. Fast processing and continuous simulation of automotive structural composite components. Compos. Sci. Technol. 2019, 171, 261–279. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Zhai, J.; Chen, H.; Zhu, Q.; Han, Q. Vibration reduction of the blisk by damping hard coating and its intentional mistuning design. Aerosp. Sci. Technol. 2019, 84, 1049–1058. [Google Scholar] [CrossRef]
- Tekin, E.; Kapan, Ö. Composite Manufacturing Data Management in Aerospace Industry. Procedia CIRP 2016, 41, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Sumi, T.; Ono, T. Classical guitar top board design by finite element method modal analysis based on acoustic measurements of guitars of different quality. Acoust. Sci. Technol. 2008, 29, 381–383. [Google Scholar] [CrossRef]
- Torres, J.A.; Boullosa, R.R. Influence of the bridge on the vibrations of the top plate of a classical guitar. Appl. Acoust. 2009, 70, 1371–1377. [Google Scholar] [CrossRef]
- Bilbao, S.; Torin, A.; Chatziioannou, V. Numerical modeling of collisions in musical instruments. Acta Acust. United Acust. 2015, 101, 155–173. [Google Scholar] [CrossRef]
- Caldersmith, G. Designing a guitar family. Appl. Acoust. 1995, 46, 3–17. [Google Scholar] [CrossRef]
- Elejabarrieta, M.J.; Santamaría, C.; Ezcurra, A. Air cavity modes in the resonance box of the guitar: The effect of the sound hole. J. Sound Vib. 2002, 252, 584–590. [Google Scholar] [CrossRef]
- Ono, T.; Isomura, D. Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards. Acoust. Sci. Technol. 2004, 25, 475–477. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.A.; Torres-Torres, D. Cambios en la propagación de ondas en una tapa de guitarra debidos al abanico y el puente. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2015, 31, 228–234. [Google Scholar] [CrossRef]
- Nishimura, K.; Nishimura, K. A study on timbre and sound quality of an electric guitar by selection of material around pickup. In Proceedings of the ICSV 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Paté, A.; Le Carrou, J.L.; Fabre, B. Modal parameter variability in industrial electric guitar making: Manufacturing process, wood variability, and lutherie decisions. Appl. Acoust. 2015, 96, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Knott, G.A.; Shin, Y.S.; Chargin, M. A modal analysis of the violin. Finite Elem. Anal. Des. 1989, 5, 269–279. [Google Scholar] [CrossRef]
- Yu, Y.; Jang, I.G.; Kim, I.K.; Kwak, B.M. Nodal line optimization and its application to violin top plate design. J. Sound Vib. 2010, 329, 4785–4796. [Google Scholar] [CrossRef]
- Inácio, O.; Antunes, J.; Wright, M.C.M.M. Computational modelling of string–body interaction for the violin family and simulation of wolf notes. J. Sound Vib. 2008, 310, 260–286. [Google Scholar] [CrossRef]
- Corradi, R.; Liberatore, A.; Miccoli, S. Experimental modal analysis and finite element modelling of a contemporary violin. In Proceedings of the ICSV 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Bissinger, G. Modal analysis of a violin octet. J. Acoust. Soc. Am. 2003, 113, 2105–2113. [Google Scholar] [CrossRef]
- Berthaut, J.; Ichchou, M.N.; Jézéquel, L. Piano soundboard: Structural behavior, numerical and experimental study in the modal range. Appl. Acoust. 2003, 64, 1113–1136. [Google Scholar] [CrossRef]
- Boutillon, X.; Ege, K. Vibroacoustics of the piano soundboard: Reduced models, mobility synthesis, and acoustical radiation regime. J. Sound Vib. 2013, 332, 4261–4279. [Google Scholar] [CrossRef] [Green Version]
- Ege, K.; Boutillon, X.; Rébillat, M. Vibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low- and mid-frequency ranges. J. Sound Vib. 2013, 332, 1288–1305. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, M.; Sánchez, F. Material characterization and vibro-acoustic analysis of a Preinpregnated Carbon Fiber reinforced epoxy Drum Shell. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Ibañez, M.; Muñoz, E.; Domenech, L.; Cortés, E.; Sánchez, F.; García, J.A. On the influence of mechanical and processing characterization on the vibro-acoustic response of lcm and preimpregnated composite laminates. In Proceedings of the 13th International Conference on Flow Processes in Composite Materials, Kioto, Japan, 6–9 July 2016. [Google Scholar]
- Sathej, G.; Adhikari, R. The eigenspectra of Indian musical drums. J. Acoust. Soc. Am. 2009, 125, 831–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luis and Clark Carbon Fiber Instruments. Available online: https://luisandclark.com (accessed on 12 October 2019).
- Rasch Drums. Available online: www.raschdrums.com (accessed on 10 October 2019).
- Boganyi Piano. Available online: http://www.boganyi-piano.com (accessed on 12 October 2019).
- Klos Carbon Fiber Guitars. Available online: https://klosguitars.com (accessed on 12 October 2019).
- Nilsson, A.; Liu, B. Vibro-Acoustics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, ISBN 9783662478066. [Google Scholar]
- Chaigne, A.; Campbell, M. Acoustics of Musical Instruments; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9781493936779. [Google Scholar]
- Fletcher, N.H.; Rossing, T.D. The Physics of Musical Instruments; Springer: New York, NY, USA, 1998. [Google Scholar]
- Wu, Z.H.; Li, J.H. Carbon fiber material in musical instrument making. Mater. Des. 2016, 89, 660–664. [Google Scholar] [CrossRef]
- Ono, T.; Takahashi, I.; Takasu, Y.; Miura, Y.; Watanabe, U. Acoustic characteristics of wadaiko (traditional Japanese drum) with wood plastic shell. Acoust. Sci. Technol. 2009, 30, 410–416. [Google Scholar] [CrossRef]
- Phillips, S.; Lessard, L. Application of natural fiber composites to musical instrument top plates. J. Compos. Mater. 2012, 46, 145–154. [Google Scholar] [CrossRef]
- Koruk, H.; Genc, G. Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 2015, 157, 166–168. [Google Scholar] [CrossRef] [Green Version]
- Holzweissig, F.; Leissa, A.W. Vibration of Plates. (Nasa Sp-160). VII + 353 S. m. Fig. Washington 1969. Office of Technology Utilization National Aeronautics and Space Administration. Preis brosch. $ 3.50. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19710510331 (accessed on 1 September 2019).
- Leissa, A.W. Vibration of shells. J. Chem. Inf. Model. 1973, 288, 1689–1699. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials; Taylor & Francis: Philadelphia, PA, USA, 1999. [Google Scholar]
- Ibáñez, M.; Gimenez, A.; Sanchez, F. Material Characterization and Vibro-Acoustic Analysis of a Preimpregnated Carbon Fiber Drum Shell. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Centea, T.; Grunenfelder, L.K.; Nutt, S.R. A review of out-of-autoclave prepregs—Material properties, process phenomena, and manufacturing considerations. Compos. Part. A Appl. Sci. Manuf. 2015, 70, 132–154. [Google Scholar] [CrossRef]
- Levy, A.; Kratz, J.; Hubert, P. Air evacuation during vacuum bag only prepreg processing of honeycomb sandwich structures: In-plane air extraction prior to cure. Compos. Part. A Appl. Sci. Manuf. 2015, 68, 365–376. [Google Scholar] [CrossRef]
- Kourkoutsaki, T.; Comas-Cardona, S.; Binetruy, C.; Upadhyay, R.K.; Hinterhoelzl, R. The impact of air evacuation on the impregnation time of Out-of-Autoclave prepregs. Compos. Part. A Appl. Sci. Manuf. 2015, 79, 30–42. [Google Scholar] [CrossRef]
- Hamill, L.; Centea, T.; Nutt, S. Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies. Compos. Part. A Appl. Sci. Manuf. 2015, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saenz-Castillo, D.; Martín, M.I.; Calvo, S.; Rodriguez-Lence, F.; Güemes, A. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Compos. Part. A Appl. Sci. Manuf. 2019, 121, 308–320. [Google Scholar] [CrossRef]
- Tai, J.-H.; Kaw, A. Transverse shear modulus of unidirectional composites with voids estimated by the multiple-cells model. Compos. Part. A Appl. Sci. Manuf. 2018, 105, 310–320. [Google Scholar] [CrossRef]
- Turteltaub, S.; de Jong, G. Multiscale modeling of the effect of sub-ply voids on the failure of composite materials. Int. J. Solids Struct. 2019, 165, 63–74. [Google Scholar] [CrossRef]
- Grunenfelder, L.K.; Nutt, S.R. Void formation in composite prepregs—Effect of dissolved moisture. Compos. Sci. Technol. 2010, 70, 2304–2309. [Google Scholar] [CrossRef]
- Zheng, C.; Liang, S. Preparation and damping properties of medium-temperature co-cured phenolic resin matrix composite structures. Compos. Struct. 2019, 217, 122–129. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, X.; Li, H.; Xiong, M. Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct. 2019, 212, 609–624. [Google Scholar] [CrossRef]
- ISO 6721-3 Plastics-Determination of Dynamic Mechanical Properties—Flexural Vibration—Resonance Curve Method. Available online: https://www.iso.org/standard/13169.html (accessed on 1 September 2019).
- Graesser, E.J.; Wong, C.R. ASTM Special Technical Publication; ASTM: West Conshohocken, PA, USA, 1992; pp. 316–343. [Google Scholar]
Young Modulus (GPa) | Poisson Ratio | Shear Modulus (GPa) | |||||||
---|---|---|---|---|---|---|---|---|---|
Density (kg/m3) | x | y | z | Xy | yz | xz | xy | yz | xz |
1420 | 35.9 | 35.9 | 6.9 | 0.04 | 0.34 | 0.34 | 11.5 | 2.7 | 2.7 |
Mode | c (m/s) | |||||||
---|---|---|---|---|---|---|---|---|
1.39 × 103 | 2.0 | 1.17 × 102 | 2.73 × 1010 | 6.12 × 107 | 2.24 × 10−3 | 2.24 × 10−3 | 7.05 × 10−3 | 4.44 × 103 |
3.0 | 3.52 × 102 | 3.19 × 1010 | 7.85 × 107 | 2.46 × 10−3 | 2.46 × 10−3 | 7.74 × 10−3 | 4.80 × 103 | |
4.0 | 7.09 × 102 | 3.37 × 1010 | 9.18 × 107 | 2.73 × 10−3 | 2.73 × 10−3 | 8.57 × 10−3 | 4.93 × 103 | |
5.0 | 1.17 × 103 | 3.36 × 1010 | 1.02 × 108 | 3.04 × 10−3 | 3.04 × 10−3 | 9.55 × 10−3 | 4.92 × 103 | |
6.0 | 1.69 × 102 | 3.12 × 1010 | 1.28 × 108 | 4.10 × 10−3 | 4.10 × 10−3 | 1.29 × 10−2 | 4.74 × 103 |
Mode | c (m/s) | |||||||
---|---|---|---|---|---|---|---|---|
1.16 × 103 | 2.0 | 1.15 × 102 | 2.00 × 1010 | 5.18 × 107 | 2.59 × 10−3 | 2.59 × 10−3 | 8.14 × 10−3 | 4.15 × 103 |
3.0 | 3.38 × 102 | 2.25 × 1010 | 5.60 × 107 | 2.49 × 10−3 | 2.49 × 10−3 | 7.81 × 10−3 | 4.40 × 103 | |
4.0 | 6.78 × 102 | 2.37 × 1010 | 3.86 × 108 | 1.63 × 10−2 | 1.63 × 10−2 | 5.12 × 10−2 | 4.51 × 103 | |
5.0 | 1.11 × 103 | 2.31 × 1010 | 3.93 × 108 | 6.60 × 10−2 | 6.59 × 10−2 | 2.07 × 10−1 | 4.46 × 103 | |
6.0 | 1716.18 | 2.48 × 1010 | 3.91 × 108 | 1.58 × 10−2 | 1.58 × 10−2 | 4.95 × 10−2 | 4.62 × 103 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez-Arnal, M.; Doménech-Ballester, L.; Sánchez-López, F. A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing. Appl. Sci. 2019, 9, 4615. https://doi.org/10.3390/app9214615
Ibáñez-Arnal M, Doménech-Ballester L, Sánchez-López F. A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing. Applied Sciences. 2019; 9(21):4615. https://doi.org/10.3390/app9214615
Chicago/Turabian StyleIbáñez-Arnal, Manuel, Luis Doménech-Ballester, and Fernando Sánchez-López. 2019. "A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing" Applied Sciences 9, no. 21: 4615. https://doi.org/10.3390/app9214615
APA StyleIbáñez-Arnal, M., Doménech-Ballester, L., & Sánchez-López, F. (2019). A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing. Applied Sciences, 9(21), 4615. https://doi.org/10.3390/app9214615