Design and Application of the BiVib Audio-Tactile Piano Sample Library
Abstract
:1. Introduction
2. Creation of the BiVib library
2.1. Recording Hardware
2.2. Recording Software
2.3. Sample Pre-Processing
2.4. Sample Library Organization
3. Application of the BiVib Library
3.1. Sample Reproduction
- Vibration accelerations in m/s2 are calculated from the vibration samples by making use of the nominal sensitivity values of the audio interface and accelerometer: voltage values are reconstructed from the recorded digital signals (represented by values between −1 and 1) by means of the line input sensitivity of the audio interface, whose full scale level (0 dBFS) was set to dBu (reference voltage 0.775 V) for recording. Finally, voltage values are transformed into proportional acceleration values through the sensitivity constant of the accelerometer, equal to 10.2 mV/m/s2 at 25 °C, with a flat (%) frequency response in the range 10–15,000 Hz.As an example, the digital value 0.001 is equivalent to:Finally, the matching acceleration value is obtained as:
- Analogously, acoustic pressure values in Pa are obtained from the binaural samples by making use of the relevant nominal specification values of the microphone input chain (microphone, pre-amplifier if present, audio interface input). For the upright piano: microphone sensitivity of 20 mV/Pa, audio interface input gain set to dB for an equivalent 0 dBFS level of dBu (reference 0.775 V). For the grand piano: microphone sensitivity 50 mV/Pa, preamplifier gain dB, and audio interface input gain set to dB for an equivalent 0 dBFS level of dBu (reference 0.775 V).As an example, the digital value , equivalent to dBFS as seen in Equation (1), translates to the following voltages:
3.2. Sample Equalization and Limitations
4. Experiments, Applications and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, E.O. Touch and Tone-Quality: The Pianist’s Illusion. Music. Times 1939, 80, 173–176. [Google Scholar] [CrossRef]
- Palmer, C.F.; Jones, R.K.; Hennessy, B.L.; Unze, M.G.; Pick, A.D. How is a trumpet known? The “basic object level” concept and perception of musical instruments. Am. J. Psychol. 1989, 102, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Galembo, A.; Askenfelt, A. Quality assessment of musical instruments—Effects of multimodality. In Proceedings of the 5th Triennial Conference of the European Society for the Cognitive Sciences of Music (ESCOM5), Hannover, Germany, 8–13 September 2003. [Google Scholar]
- Hodges, D.A.; Hairston, W.D.; Burdette, J.H. Aspects of Multisensory Perception: The Integration of Visual and Auditory Information in Musical Experiences. Ann. N. Y. Acad. Sci. 2005, 1060, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.M. Evaluating musical instruments. Phys. Today 2014, 67, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.; Genter, B. The musician and the vibrational behavior of a violin. J. Catgut Acoust. Soc. 1986, 45, 28–33. [Google Scholar]
- Suzuki, H. Vibration and sound radiation of a piano soundboard. J. Acoust. Soc. Am. 1986, 80, 1573–1582. [Google Scholar] [CrossRef]
- Askenfelt, A.; Jansson, E.V. On Vibration Sensation and Finger Touch in Stringed Instrument Playing. Music Percept. 1992, 9, 311–349. [Google Scholar] [CrossRef] [Green Version]
- Keane, M.; Dodd, G. Subjective Assessment of Upright Piano Key Vibrations. Acta Acust. United Acust. 2011, 97, 708–713. [Google Scholar] [CrossRef]
- Saitis, C. Evaluating Violin Quality: Player Reliability and Verbalization. Ph.D. Thesis, Department of Music Research, McGill University, Montreal, QC, Canada, 2013. [Google Scholar]
- Wollman, I.; Fritz, C.; Poitevineau, J. Influence of vibrotactile feedback on some perceptual features of violins. J. Acoust. Soc. Am. 2014, 136, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Papetti, S.; Järveläinen, H.; Avanzini, F. Detection of keyboard vibrations and effects on perceived piano quality. J. Acoust. Soc. Am. 2017, 142, 2953–2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Modhrain, S.; Gillespie, B.R. Once More, with Feeling: The Dynamics of Performer-Instrument Interaction. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Papetti, S.; Saitis, C. (Eds.) Musical Haptics; Springer: Berlin, Germany, 2018. [Google Scholar]
- O’Modhrain, S.; Chafe, C. Incorporating Haptic Feedback into Interfaces for Music Applications. In Proceedings of the World Automation Conference ISORA, Maui, HI, USA, 11–16 June 2000. [Google Scholar]
- Marshall, M.T.; Wanderley, M.M. Vibrotactile feedback in digital musical instruments. In Proceedings of the 2006 Conference on New Interfaces for Musical Expression, Paris, France, 4–8 June 2006; pp. 226–229. [Google Scholar]
- Overholt, D.; Berdahl, E.; Hamilton, R. Advancements in Actuated Musical Instruments. Organ. Sound 2011, 16, 154–165. [Google Scholar] [CrossRef]
- Birnbaum, D.M.; Wanderley, M.M. A systematic approach to musical vibrotactile feedback. In Proceedings of the International Computer Music Conference, Copenhagen, Denmark, 27–31 August 2007. [Google Scholar]
- Michailidis, T.; Bullock, J. Improving performers’ musicality through live interaction with haptic feedback: A case study. In Proceedings of the Sound and Music Computing (SMC), Padova, Italy, 6–9 July 2011. [Google Scholar]
- Fontana, F.; Avanzini, F.; Järveläinen, H.; Papetti, S.; Klauer, G.; Malavolta, L. Rendering and Subjective Evaluation of Real vs. Synthetic Vibrotactile Cues on a Digital Piano Keyboard. In Proceedings of the Sound and Music Computing Conference, Maynooth, Ireland, 26 July–1 August 2015; pp. 161–167. [Google Scholar]
- Young, G.W.; Murphy, D.; Weeter, J. A Qualitative Analysis of Haptic Feedback in Music Focused Exercises. In Proceedings of the New Interfaces for Musical Expression NIME’17, Copenhagen, Denmark, 15–18 May 2017; pp. 204–209. [Google Scholar]
- Maestre, E.; Papiotis, P.; Marchini, M.; Llimona, Q.; Mayor, O.; Pérez, A.; Wanderley, M.M. Enriched Multimodal Representations of Music Performances: Online Access and Visualization. IEEE MultiMed. 2017, 24, 24–34. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.; Dinesh, K.; Duan, Z.; Sharma, G. Creating a Multitrack Classical Music Performance Dataset for Multimodal Music Analysis: Challenges, Insights, and Applications. IEEE Trans. Multimed. 2019, 21, 522–535. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Von Coler, H. TU-Note Violin Sample Library—A Database of Violin Sounds with Segmentation Ground Truth. In Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 4–8 September 2018; pp. 312–317. [Google Scholar]
- Mayor, O.; Llop, J.; Maestre Gómez, E. RepoVizz: A multi-modal on-line database and browsing tool for music performance research. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami, FL, USA, 24–28 October 2011. [Google Scholar]
- Moog, R.A.; Rhea, T.L. Evolution of the Keyboard Interface: The Bösendorfer 290 SE Recording Piano and the Moog Multiply-Touch-Sensitive Keyboards. Comput. Music J. 1990, 14, 52–60. [Google Scholar] [CrossRef]
- McPherson, A.P.; Gierakowski, A.; Stark, A.M. The space between the notes: Adding expressive pitch control to the piano keyboard. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; ACM: New York, NY, USA, 2013; pp. 2195–2204. [Google Scholar]
- d’Alessandro, N.; Tilmanne, J.; Moreau, A.; Puleo, A. AirPiano: A Multi-Touch Keyboard with Hovering Control. In Proceedings of the International Conference on New Interfaces for Musical Expression; Berdahl, E., Allison, J., Eds.; Louisiana State University: Baton Rouge, LA, USA, 2015; pp. 255–258. [Google Scholar]
- Fontana, F.; Scappin, D.; Avanzini, F.; Bernardi, M.; Bianco, D.; Klauer, G. Auditory, Visual And Somatosensory Localization Of Piano Tones: A Preliminary Study. In Proceedings of the Sound Music Computing Conference (SMC), Espoo, Finland, 5–8 July 2017; pp. 254–260. [Google Scholar]
- Papetti, S.; Avanzini, F.; Fontana, F. BIVIB: A Multimodal Piano Sample Library of Binaural Sounds and Keyboard Vibrations. In Proceedings of the International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 4–8 September 2018; pp. 237–243. [Google Scholar]
- Fontana, F.; Avanzini, F.; Papetti, S. Evidence of lateralization cues in grand and upright piano sounds. In Proceedings of the 15th International Conference on Sound and Music Computing (SMC2018), Limassol, Cyprus, 4–7 July 2018; pp. 80–84. [Google Scholar]
- Goebl, W.; Bresin, R. Measurement and reproduction accuracy of computer-controlled grand pianos. J. Acoust. Soc. Am. 2003, 114, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Papetti, S.; Järveläinen, H.; Giordano, B.L.; Schiesser, S.; Fröhlich, M. Vibrotactile sensitivity in active touch: Effect of pressing force. IEEE Trans. Haptics 2017, 10, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique. In Proceedings of the 108th Convention of the Audio Engineering Society, Paris, France, 19–22 February 2000. [Google Scholar]
- Kirkeby, O.; Nelson, P.A.; Hamada, H.; Orduña-Bustamante, F. Fast deconvolution of multichannel systems using regularization. IEEE Trans. Speech Audio Process. 1998, 6, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Papetti, S.; Schiesser, S.; Fröhlich, M. Multi-point vibrotactile feedback for an expressive musical interface. In Proceedings of the International Conference on New Interfaces for Musical Expression; Berdahl, E., Allison, J., Eds.; Louisiana State University: Baton Rouge, LA, USA, 2015; pp. 235–240. [Google Scholar]
- Verrillo, R.T. Vibration sensation in humans. Music Percept. 1992, 9, 281–302. [Google Scholar] [CrossRef]
- Kayser, C.; Petkov, C.I.; Augath, M.; Logothetis, N.K. Integration of Touch and Sound in Auditory Cortex. Neuron 2005, 48, 373–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillmeister, H.; Eimer, M. Tactile enhancement of auditory detection and perceived loudness. Brain Res. 2007, 1160, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Ro, T.; Hsu, J.; Yasar, N.E.; Elmore, L.C.; Beauchamp, M.S. Sound enhances touch perception. Exp. Brain Res. 2009, 195, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Askenfelt, A. Observations on the transient components of the piano tone. STL-QPSR 1993, 34, 15–22. Available online: http://www.speech.kth.se/qpsr/show_by_author.php?author=Askenfelt%2C+A (accessed on 1 March 2019).
- Kalra, S.; Jain, S.; Agarwal, A. Infrared Powered Vibro-Haptic Piano Training System for the Visually Impaired. Int. J. Adv. Soft Comput. Appl. 2017, 9, 49–68. [Google Scholar]
- Alves-Pinto, A.; Ehrlich, S.; Cheng, G.; Turova, V.; Blumenstein, T.; Lampe, R. Effects of short-term piano training on measures of finger tapping, somatosensory perception and motor-related brain activity in patients with cerebral palsy. Neuropsychiatr. Dis. Treat. 2017, 13, 2705. [Google Scholar] [CrossRef] [PubMed]
- Rocchesso, D. Spatial effects. In Digital Audio Effects; Zölzer, U., Ed.; John Wiley & Sons: Chirchester Sussex, UK, 2002; pp. 137–200. [Google Scholar]
Disklavier Grand | Disklavier Upright | |
---|---|---|
Sample sets (.wav files) | Binaural (closed) Binaural (open) Binaural (removed) Keyboard vibration | Binaural (closed) Binaural (semi-open) Binaural (open) Keyboard vibration |
Sampler projects (Kontakt multis) | Binaural (closed) + vibration Binaural (open) + vibration Binaural (removed) + vibration | Binaural (closed) + vibration Binaural (semi-open) + vibration Binaural (open) + vibration |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papetti, S.; Avanzini, F.; Fontana, F. Design and Application of the BiVib Audio-Tactile Piano Sample Library. Appl. Sci. 2019, 9, 914. https://doi.org/10.3390/app9050914
Papetti S, Avanzini F, Fontana F. Design and Application of the BiVib Audio-Tactile Piano Sample Library. Applied Sciences. 2019; 9(5):914. https://doi.org/10.3390/app9050914
Chicago/Turabian StylePapetti, Stefano, Federico Avanzini, and Federico Fontana. 2019. "Design and Application of the BiVib Audio-Tactile Piano Sample Library" Applied Sciences 9, no. 5: 914. https://doi.org/10.3390/app9050914
APA StylePapetti, S., Avanzini, F., & Fontana, F. (2019). Design and Application of the BiVib Audio-Tactile Piano Sample Library. Applied Sciences, 9(5), 914. https://doi.org/10.3390/app9050914