Experiment and Modeling on Macro Fiber Composite Stress-Induced Actuation Function Degradation
Abstract
:1. Introduction
2. Experiment Set Up and Procedures
2.1. Actuation Function Degradation Characterization of Macro Fiber Composite (MFC) Actuator Undergoing Cyclic Load
2.2. Actuation Function Degradation Test of MFC Actuator Undergoing Cyclic Load
3. Results and Discussion
4. Predictive Modeling of Stress Induced MFC Actuation Function Degradation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alguero, M.; Cheng, B.L.; Guiu, F.; Reece, M.J.; Poole, M.; Alford, N. Degradation of the d33 piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. J. Eur. Ceram. Soc. 2001, 21, 1437–1440. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Zhao, J. Electromechanical Properties of Lead Zirconate Titanate Piezoceramics under the Influence of Mechanical Stress. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 151–1526. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.-P.; Kim, S.-H. Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr,Ti)O3 cremaics. Mater. Sci. Eng. 1996, 38, 182–185. [Google Scholar] [CrossRef]
- Cain, M.G.; Stewart, M.; Gee, M. Degradation of Piezoelectric Materials. Natl. Lab. Rep. CMMT(A) 1996, 148, 1–42. [Google Scholar]
- Xu, C.H.; Hu, J.H.; Chan, H.L.W. Behavior of a PZT ring under non-uniform mechanical stress. Ultrasonic 2002, 39, 735–742. [Google Scholar] [CrossRef]
- Xu, C.H.; Chan, H.L.W.; Liu, P.C.K. Change of material parameters of lead zirconate titanate rings after applying non-uniform mechanical stress. Mater. Lett. 2004, 58, 1616–1619. [Google Scholar] [CrossRef]
- Zhou, D.; Kamlah, M. Dielectric and piezoelectric performance of soft PZT piezoceramics under simultaneous alternating electromehcanical loading. J. Eur. Ceram. Soc. 2005, 25, 2415–2420. [Google Scholar] [CrossRef]
- Selten, M.; Schneider, G.A.; Knoblauch, V.; McMeeking, R.M. On the evolution of the linear material properties of PZT during loading history-an experimental study. Int. J. Solids Struct. 2005, 42, 3953–3966. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ichiki, M.; Kondou, R.; Nakamure, K.; Maeda, R. Degradation in the ferroelectric and piezoelectric properties of Pb(Zr,Ti)O3 thin films derived from a MEMS micro fabrication process. J. Micromech. Microeng. 2007, 17, 1238–1241. [Google Scholar] [CrossRef]
- Pillatsch, P.; Shashoua, N.; Holmes, A.S.; Yeatman, E.M.; Wright, P.K. Degradation of Piezoelectric Materials for Energy Harvesting Application. J. Phys. Conf. Ser. 2014, 557, 012129. [Google Scholar] [CrossRef]
- Upadrashta, D.; Yang, Y. Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sens. Actuator A Phys. 2016, 244, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Pillatsch, P.; Xiao, B.L.; Shashoua, N.; Gramling, H.M.; Yeatman, E.M.; Wright, P.K. Degradation of Bimorph Piezoelectric Bending Beams in Energy Harvesting Application. Smart Mater. Struct. 2017, 26, 35–46. [Google Scholar] [CrossRef]
- Kimotho, J.K.; Hemsel, T.; Sextro, W. Estimation of Remaining Useful Lifetime of Piezoelectric Transducers Based on Self-Sensing. IEEE Trans. Reliab. 2017, 66, 914–923. [Google Scholar] [CrossRef]
- Peddigari, M.; Kim, G.-Y.; Park, C.H.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.J.; Hahn, B.-D.; Choi, J.-H.; Park, D.-S.; et al. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. Sensors 2019, 19, 2196. [Google Scholar] [CrossRef] [PubMed]
- Available online: http:// www.smart-material.com (accessed on 9 August 2018).
- Zhang, X.; Sun, F.; Li, X. A degredation interval prediction method based on RBF neural network. In Proceedings of the International Conference on Reliability, Maintainability and Safety, Guangzhou, China, 6–8 August 2014. [Google Scholar]
- Nabavi, S.; Zhang, L. Design and Optimization of a Low-Resonant-Frequency Piezoelectric MEMS Energy Harvester Based on Artificial Intelligence. In Proceedings of the 2018 Euro Sensors, Graz, Austria, 9–12 September 2018; pp. 930–935. [Google Scholar]
MFC (M2814-P1) | |
---|---|
Full size (mm) | 60 × 32 × 0.3 |
Active size (mm) | 56 × 28 × 0.3 |
Fiber Material | PZT-5A |
d33 (pm/V) | 400 |
E1 (GPa) E2 (GPa) | 30.34 15.85 |
Neuron Number in Hidden Layer | Radial Basis Function Center | Weight between Hidden Layer and Output Layer | |
---|---|---|---|
1 | −0.10 | −1.00 | 4.51 × 10−1 |
2 | 0.30 | 1.00 | 1.75 × 104 |
3 | 1.00 | −1.00 | 5.48 × 10−1 |
4 | −1.00 | −1.00 | 2.38 × 10−1 |
5 | −1.00 | −0.33 | −5.35 × 102 |
6 | 1.00 | 1.00 | −5.63 × 103 |
7 | 0.00 | 1.00 | −9.81 × 104 |
8 | −0.90 | −0.33 | 1.73 × 103 |
9 | −1.00 | 1.00 | 6.33 × 104 |
10 | −0.90 | 1.00 | 1.87 × 104 |
11 | −0.80 | 1.00 | −1.52 × 106 |
12 | −0.70 | 1.00 | 5.64 × 106 |
13 | 1.00 | −0.33 | 3.19 × 10−1 |
14 | −0.60 | 1.00 | −1.03 × 107 |
15 | −0.50 | 1.00 | 1.11 × 107 |
16 | 0.40 | −1.00 | 7.53 × 10−2 |
17 | −0.40 | 1.00 | −6.90 × 106 |
18 | −0.30 | 1.00 | 2.03 × 106 |
19 | 0.90 | 1.00 | 1.68 × 104 |
20 | 0.80 | 1.00 | −1.39 × 104 |
21 | −0.80 | −0.33 | −2.01 × 103 |
22 | −0.30 | −0.33 | −5.02 × 101 |
23 | 0.50 | −0.33 | −0.36 × 101 |
24 | −0.70 | −0.33 | 8.55 × 102 |
25 | 0.10 | −0.33 | 1.25 × 101 |
Test A% | Fitting A% | Prediction A% | Cycles | ||||||
---|---|---|---|---|---|---|---|---|---|
30 MPa | 18 MPa | 12 MPa | 30 MPa | 18 MPa | 12 MPa | 24 MPa | |||
Test | Predict | Error | |||||||
100 | 100 | 100 | 100 | 100 | 100 | 100 | 97 | 3% | 0 |
75 | 98 | 100 | 75 | 99 | 100 | 90 | 87 | 3% | 5.0 × 104 |
70 | 96 | 100 | 70 | 96 | 100 | 87 | 84 | 4% | 1.0 × 105 |
68 | 93 | 99 | 68 | 93 | 99 | 85 | 82 | 4% | 1.5 × 105 |
67 | 90 | 99 | 66 | 90 | 99 | 83 | 80 | 3% | 2.0 × 105 |
64 | 89 | 100 | 65 | 89 | 99 | 82 | 79 | 4% | 2.5 × 105 |
65 | 89 | 99 | 63 | 88 | 100 | 82 | 78 | 4% | 3.0 × 105 |
61 | 88 | 100 | 62 | 88 | 100 | 78 | 77 | 1% | 3.5 × 105 |
62 | 87 | 100 | 61 | 88 | 100 | 78 | 77 | 2% | 4.0 × 105 |
60 | 87 | 100 | 60 | 87 | 100 | 74 | 76 | 2% | 4.5 × 105 |
59 | 86 | 100 | 59 | 86 | 100 | 74 | 75 | 2% | 5.0 × 105 |
60 | 85 | 100 | 59 | 86 | 100 | 74 | 75 | 2% | 5.5 × 105 |
59 | 85 | 100 | 59 | 86 | 100 | 75 | 75 | 0% | 6.0 × 105 |
58 | 88 | 100 | 58 | 86 | 100 | 72 | 75 | 4% | 6.5 × 105 |
58 | 87 | 100 | 58 | 87 | 100 | 75 | 75 | 0% | 7.0 × 105 |
58 | 84 | 100 | 58 | 86 | 100 | 73 | 75 | 3% | 7.5 × 105 |
58 | 87 | 100 | 58 | 86 | 100 | 74 | 75 | 1% | 8.0 × 105 |
57 | 85 | 100 | 57 | 85 | 100 | 73 | 74 | 1% | 8.5 × 105 |
57 | 85 | 100 | 57 | 85 | 100 | 72 | 73 | 3% | 9.0 × 105 |
58 | 85 | 100 | 58 | 85 | 100 | 72 | 74 | 3% | 9.5 × 105 |
57 | 85 | 100 | 57 | 85 | 100 | 71 | 74 | 4% | 1.0 × 106 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, Z.; Yang, Z. Experiment and Modeling on Macro Fiber Composite Stress-Induced Actuation Function Degradation. Appl. Sci. 2019, 9, 4714. https://doi.org/10.3390/app9214714
Wang W, Zhang Z, Yang Z. Experiment and Modeling on Macro Fiber Composite Stress-Induced Actuation Function Degradation. Applied Sciences. 2019; 9(21):4714. https://doi.org/10.3390/app9214714
Chicago/Turabian StyleWang, Wei, Zikuo Zhang, and Zhichun Yang. 2019. "Experiment and Modeling on Macro Fiber Composite Stress-Induced Actuation Function Degradation" Applied Sciences 9, no. 21: 4714. https://doi.org/10.3390/app9214714
APA StyleWang, W., Zhang, Z., & Yang, Z. (2019). Experiment and Modeling on Macro Fiber Composite Stress-Induced Actuation Function Degradation. Applied Sciences, 9(21), 4714. https://doi.org/10.3390/app9214714