Measurement Enhancement on Two-Dimensional Temperature Distribution of Methane-Air Premixed Flame Using SMART Algorithm in CT-TDLAS
Abstract
:1. Introduction
2. Theory of TDLAS
3. TDLAS Tomographic Reconstruction Model (Prototype, Tokushima University, Tokushima, Japan, 2016)
4. Estimation of Initial Temperature and Performance Evaluation
5. Experimental Setup
6. Results and Discussion
6.1. Optimization for TDLAS
6.2. Estimation of Initial Temperature and the Spatial Resolution Evaluate for CT-TDLAS
6.3. Experimental Tests
7. Conclusions
- It can be seen that the CSLOS method has better performance than the SLOS method for initial value calculation. Therefore, a CSLOS method has been adopted to get initial values. It has been experimentally shown that this approach is appropriate for choosing the initial values for performing iterative calculations with the experimental absorption spectra of the CT-TDLAS.
- In order to evaluate the performance of the adopted CT-TDLAS algorithm, three parameters, FWHM, SSD, and ZNCC, have been adopted, by which the adopted CT-TDLAS algorithm is capable of reconstructing the temperature distribution and the concentration distribution with relatively high accuracy.
- To enhance of the performance of the temperature measurement using the CT-TDLAS, the SMART algorithm has been adopted, and the relative error was 10.12%. This implies that a SMART algorithm is a reliable approach for reconstructing the multiple signals of the CT-TDLAS.
- The discrepancies between the temperature measured by the thermocouple and the temperature calculated by the CT-TDLAS were quite small at outside locations from the flame burner center. However, these discrepancies were relatively larger at the center region (high-temperature area) of the burner. It seems that the major part of the temperature discrepancies was due to the influence of the radiation flux.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Lim, C.B.; Lee, K.K.; Yang, S.S. Wireless Surface Acoustic Wave Chemical Sensor for Simultaneous Measurement of CO2 and Humidity. J. Micro/Nanolith. MEMS MOEMS 2009, 8, 031306. [Google Scholar] [CrossRef]
- Sternhagen, J.D.; Wold, C.E.; Kempf, W.A. A Novel Integrated Acoustic Gas and Temperature Sensor. IEEE Sens. J. 2002, 2, 301–306. [Google Scholar] [CrossRef]
- Dossi, N.; Toniolo, R.; Pizzariello, A.; Carrilho, E.; Piccin, E.; Battiston, S.; Bontempelli, G. An Electrochemical Gas Sensor based on Paper Supported Room Temperature Ionic Liquids. Lab Chip 2012, 12, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Fine, G.F.; Cavanagh, I.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y. Industrial applications of Laser Diagnostics; Taylor & Francis CRS Press: Boca Raton, FL, USA, 2011; ISBN 9781439853375. [Google Scholar]
- Zaatar, Y.; Bechara, J.; Khoury, A.; Zaouk, D.; Charles, J.-P. Diode laser sensor for process control and environmental monitoring. Appl. Energy 2000, 65, 107–113. [Google Scholar] [CrossRef]
- Yamakage, M.; Muta, K.; Deguchi, Y.; Fukada, S.; Iwase, T.; Yoshida, T. Development of Direct and Fast Response Exhaust Gas. Meas. SAE Paper 2008, 20081298. [Google Scholar] [CrossRef]
- Morthier, G.; Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes; Artech House Applied Photonics: Boston, FL, USA, 2013; ISBN 978-1608077014. [Google Scholar]
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford University Press: Oxford, UK, 2006; ISBN 9780195179460. [Google Scholar]
- Kranendonk, L.A.; Walewski, J.W.; Kim, T.; Sanders, S.T. Wavelength-agile sensor applied for HCCI engine measurement. Proc. Combust. Inst. 2005, 30, 1619–1627. [Google Scholar] [CrossRef]
- Rieker, G.B.; Li, H.; Liu, X.; Liu, J.T.C.; Jeffries, J.B.; Hanson, R.K.; Allen, M.G.; Wehe, S.D.; Mulhall, P.A.; Kindle, H.S.; et al. Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor. Proc. Combust. Inst. 2007, 31, 3041–3049. [Google Scholar] [CrossRef]
- Liu, X.; Jeffries, J.B.; Hanson, R.K.; Hinckley, K.M.; Woodmansee, M.A. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature. Appl. Phys. B 2006, 82, 469–478. [Google Scholar] [CrossRef]
- Sumizawa, H.; Yamada, H.; Tonokura, K. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B 2010, 100, 925–931. [Google Scholar] [CrossRef]
- Anderson, T.N.; Lucht, R.P.; Priyadarsan, S.; Annamalai, K.; Caton, J.A. In situ measurements of nitric oxide in coal-combustion exhaust using a sensor based on a widely tunable external-cavity GaN diode laser. Appl. Opt. 2007, 46, 3946–3957. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, J.K.; Anderson, T.N.; Lucht, R.P. Application of a diode-laser-based ultraviolet absorption sensor for in situ measurements of atomic mercury in coal-combustion exhaust. Energy Fuels 2008, 22, 3029–3036. [Google Scholar] [CrossRef]
- Kasyutich, V.L.; Holdsworth, R.J.; Martin, P.A. In situ vehicle engine exhaust measurements of nitric oxide with a thermoelectrically cooled. J. Phys. Conf. Seeries 2009, 157, 012006. [Google Scholar] [CrossRef]
- Wang, F.; Cen, K.F.; Li, N.; Jeffries, J.B.; Huang, Q.X.; Yan, J.H.; Chi, Y. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy. Meas. Sci. Technol. 2010, 21. [Google Scholar] [CrossRef]
- Ma, L.; Cai, W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging. Appl. Opt. 2008, 47, 3751–3759. [Google Scholar] [CrossRef]
- Wright, P.; Terzija, N.; Davidson, L.; Castillo, S.G.; Garcia-Stewart, C.; Pegrum, S.; Colbourne, S.; Turner, P.; Crossley, S.D.; Litt, T.; et al. High-speed chemical species tomography in a multi-cylinder automotive engine. Chem. Eng. J. 2010, 158, 2–10. [Google Scholar] [CrossRef]
- Jeon, M.G.; Deguchi, Y.; Kamimoto, T.; Doh, D.H.; Cho, G.R. Performances of new reconstruction algorithms for CT-TDLAS computer tomography-tunable diode laser absorption spectroscopy. Appl. Therm. Eng. 2017, 115, 1148–1160. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2008 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef]
- Kamimoto, T.; Deguchi, Y.; Kiyota, Y. High temperature field application of two dimensional temperature measurement technology using CT tunable diode laser absorption spectroscopy. Flow Meas. Instrum. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- An, X.; Kraetschmer, T.; Takami, K.; Sanders, S.T.; Ma, L.; Cai, W.; Li, X.; Roy, S.; Gord, J.R. Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments. Appl. Opt. 2011, 50, 29–37. [Google Scholar] [CrossRef]
- Choi, D.W.; Jeon, M.G.; Cho, G.R.; Kamimoto, T.; Deguchi, Y.; Doh, D.H. Performance Improvements in Temperature Reconstructions of 2-D Tunable Diode Laser Absorption Spectroscopy TDLAS. J. Therm. Sci. 2016, 25, 84–89. [Google Scholar] [CrossRef]
- Kamimoto, T.; Deguchi, Y. 2D Temperature Detection Characteristics of Engine Exhaust Gases Using CT Tunable Diode Laser Absorption Spectroscopy. Int. J. Mech. Syst. Eng. 2015, 1, 109. [Google Scholar] [CrossRef] [PubMed]
Combustion Fuel | Methane (L/min) | Dry Air (L/min) | Around Air (L/min) | All Air: Dry Air + Around Air (L/min) |
---|---|---|---|---|
Methane-Air premixed flame | 0.74 | 3.4 | 96.6 | 100 |
Case No. | FWHM (Virtual) [mm] | FWHM (CT-TDLAS) [mm] | SSD | ZNCC |
---|---|---|---|---|
Case 1 | 10 | 16.9 | 0.14785 | 0.83801 |
Case 2 | 15 | 17.7 | 0.05381 | 0.97191 |
Case 3 | 20 | 18.1 | 0.01962 | 0.99907 |
Measurement Type | SSD | ZNCC |
---|---|---|
CT-TDLAS | 0.05737 | 0.9480 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, M.-G.; Doh, D.-H.; Deguchi, Y. Measurement Enhancement on Two-Dimensional Temperature Distribution of Methane-Air Premixed Flame Using SMART Algorithm in CT-TDLAS. Appl. Sci. 2019, 9, 4955. https://doi.org/10.3390/app9224955
Jeon M-G, Doh D-H, Deguchi Y. Measurement Enhancement on Two-Dimensional Temperature Distribution of Methane-Air Premixed Flame Using SMART Algorithm in CT-TDLAS. Applied Sciences. 2019; 9(22):4955. https://doi.org/10.3390/app9224955
Chicago/Turabian StyleJeon, Min-Gyu, Deog-Hee Doh, and Yoshihiro Deguchi. 2019. "Measurement Enhancement on Two-Dimensional Temperature Distribution of Methane-Air Premixed Flame Using SMART Algorithm in CT-TDLAS" Applied Sciences 9, no. 22: 4955. https://doi.org/10.3390/app9224955
APA StyleJeon, M. -G., Doh, D. -H., & Deguchi, Y. (2019). Measurement Enhancement on Two-Dimensional Temperature Distribution of Methane-Air Premixed Flame Using SMART Algorithm in CT-TDLAS. Applied Sciences, 9(22), 4955. https://doi.org/10.3390/app9224955