Effects of Ultrasonic Impact Treatment on the Stress-Controlled Fatigue Performance of Additively Manufactured DMLS Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Manufacturing
2.2. UIT Device
2.3. Specimens Fixture
2.4. Fatigue Testing
2.5. Microscopy
2.6. Roughness
2.7. Hardness
2.8. Residual Stresses by X-ray Diffraction
2.9. Estimation of Impact Force
2.10. Microstructural Analysis
3. Results and Discussion
3.1. Fatigue Life
3.2. Surface Microscopy
3.3. Roughness
3.4. Hardness
3.5. Residual Stresses
3.6. Impact Force Quantification
3.7. Microstructure Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Javaid, M.; Haleem, A. Additive manufacturing applications in medical cases: A literature based review. Alex. J. Med. 2017, 54, 411–422. [Google Scholar] [CrossRef]
- Schiller, G.J. Additive manufacturing for Aerospace. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Leu, M.C.; Nakagawa, T. Progress in Additive Manufacturing and Rapid Prototyping. CIRP Ann. 1998, 47, 525–540. [Google Scholar] [CrossRef]
- United States Air Force Global Horizons Final Report: United States Air Force Global Science and Technology Vision. 2013. Available online: https://www.hsdl.org/?abstract&did=741377 (accessed on 8 November 2019).
- Gebhardt, A.; Jan-Steffen, H.T. Addititve Manufacturing; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2016. [Google Scholar]
- Murr, L.E.; Gaytan, S.M.; Ceylan, A.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Medina, F.; Collins, S.; et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 2010, 58, 1887–1894. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Mercelis, P.; Vaerenbergh, V.J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid. Prototype J. 2005, 1, 26–36. [Google Scholar] [CrossRef]
- Gorny, B.; Niendorf, T.; Lackmann, J.; Thoene, M.; Troester, T.; Maier, H. In Situ Characterization of the Deformation and Failure Behavior of Non-Stochastic Porous Structures Processed by Slective Laser Melting. Mater. Sci. Eng. A 2011, 27, 2–7. [Google Scholar]
- Ciocca, L.; Fantini, M.; de Crescenzio, F.; Corinaldesi, G.; Scoti, R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med. Biol. Eng. Comput. 2011, 49, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Milewski, J.O. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Mueller, B. Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing. Assem. Autom. 2012, 32. [Google Scholar] [CrossRef]
- Deckers, J.; Vleugels, J.; Kruth, J.-P. Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Technol. 2014, 5, 245–260. [Google Scholar]
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototype 2016, 11, 209–225. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Spierings, A.B.; Starr, T.L.; Wegener, K. Fatigue performance of additive manufactured metallic parts. Rapid Prototype J. 2013, 19, 88–94. [Google Scholar] [CrossRef]
- Islam, M.; Purtonen, T.; Piili, H.; Salminen, A.; Nyrhila, O. Temperature Profile and Imaging Analysis of Laser Additive Manufacturing of Stainless Steel. Phys. Procedia 2013, 41, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Kanagarajah, P.; Brenne, F.; Niendorf, T.; Maier, H.J. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A 2013, 588, 188–195. [Google Scholar] [CrossRef]
- Vilaro, T.; Colin, C.; Bartout, J.D.; Naze, L.; Sennour, M. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater. Sci. Eng. A 2012, 534, 446–451. [Google Scholar] [CrossRef]
- Schimidtke, K.; Palm, F.; Hawkins, A.; Emmelmann, C. Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing. Phys. Procedia 2011, 12, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Brandl, E.; Heckenberger, U.; Holzinger, V.; Buchbinder, D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 2012, 34, 159–169. [Google Scholar] [CrossRef]
- Hrabe, N.W.; Quinn, T.P.; Kircher, R. Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size. Mater. Sci. Eng. A 2013, 573, 264–270. [Google Scholar] [CrossRef]
- Chan, K.S.; Koike, M.; Mason, R.L.; Okabe, T. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants. Metall. Mater. Trans. A 2013, 44, 1010–1022. [Google Scholar] [CrossRef]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Marcus, H.; Barlow, J.; Beaman, J.; Bourell, D.; Agarwala, M. Direct selective laser sintering of metals. Rapid Prototype J. 1995, 1, 26–36. [Google Scholar]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Metal AM. Applications for metal Additive Manufacturing Technology. Available online: https://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/applications-for-additive-manufacturing-technology/ (accessed on 8 November 2019).
- Vayre, B.; Vignat, F.; Villeneuve, F. Designing for Additive Manufacturing. Procedia CIRP 2012, 3, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Leuders, S.; Thone, M.; Riemer, A.; Niendorf, T.; Troster, T.; Richard, H.A.; Maier, H.J. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 2013, 48, 300–307. [Google Scholar] [CrossRef]
- Santos, E.C.; Abe, F.; Osakada, K.; Kitamura, Y.; Shiomo, M. Mechanical properties of pure titanium models processed by selective laser melting. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 5–7 August 2002; pp. 180–186. [Google Scholar]
- Li, P.; Warner, D.H.; Fatemi, A.; Phan, N. Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int. J. Fatigue 2016, 85, 130–143. [Google Scholar] [CrossRef]
- Ashan, M. 3D Printing and Titanium Alloys: A Paper Review. Eur. Acad. Res. 2016, 3. [Google Scholar]
- Tomlin, M.; Meyer, J. Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part. In Proceedings of the 7th Altair CAE Technology Conference 2011, Warwickshire, UK, 10 May 2011. [Google Scholar]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Wycisk, E.; Solbach, A.; Siddique, S.; Herzog, D.; Walther, F.; Emmelmann, C. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties. Phys. Procedia 2014, 56, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Murr, L.E.; Cheng, X.Y.; Zhang, Z.B.; Hao, Y.L.; Yang, R.; Medina, F.; Wicker, R.B. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012, 60, 793–802. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototype J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Sher, D. GE Aviation Already 3D Printed 30,000 Fuel Nozzles for its LEAP Engine. 3D Printing Media Network. Available online: https://www.3dprintingmedia.network/ge-aviation-already-3d-printed-30000-fuel-nozzles-for-its-leap-engine/ (accessed on 19 May 2019).
- Zhan, K.; Jiang, C.H.; Ji, V. Residual Stress Relaxation of Shot Peened Deformation Surface Layer on S30432 Austenite Steel under Applied Loading. Mater. Trans. 2012, 53, 1578–1581. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Andani, M.T.; Qin, H.; Moghaddam, N.S.; Ibrahim, H.; Jahadakbar, A.; Amerinatanzi, A.; Ren, Z.; Zhang, H.; Doll, G.L.; et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J. Mater. Process. Technol. 2017, 249, 433–440. [Google Scholar] [CrossRef]
- Ma, C.; Dong, Y.; Ye, C. Improving Surface Finish of 3D-printed Metals by Ultrasonic Nanocrystal Surface Modification. Procedia CIRP 2016, 45, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sheng, A. Manufacturing and Engineering Technology; CRC Press: Boca Raton, FL, USA, 2014; p. 1. [Google Scholar]
- Ye, C.; Telang, A.; Gill, A.; Wen, X.; Mannava, S.R.; Qian, D.; Vasudevan, V.K. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds. Metall. Mater. Trans. A 2018, 49, 972–978. [Google Scholar] [CrossRef]
- Cattoni, D.; Ferrari, C.; Lebedev, L.; Pazos, L.; Svoboda, H. Effect of Blasting on the Fatigue Life of Ti-6Al-7Nb and Stainless Steel AISI 316 LVM. Procedia Mater. Sci. 2012, 1, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Statnikov, E.S.; Korolkov, O.V.; Vityazev, V.N. Physics and Mechanism of Ultrasonic Impact. Ultrasonics 2006, 44, e533–e538. [Google Scholar] [CrossRef]
- Statnikov, E.S.; Muktepavel, V.O.; Blomqvist, A. Comparison of Ultrasonic Impact Treatment (UIT) and Other Fatigue Life Improvement Methods. Weld. World 2002, 46, 20–32. [Google Scholar] [CrossRef]
- Mordyuk, B.N.; Prokopenko, G.I. Ultrasonic impact peening for the surface properties’ management. J. Sound Vib. 2007, 308, 855–866. [Google Scholar] [CrossRef]
- Dekhtyar, A.I.; Mordyuk, B.N.; Savvakin, D.G.; Bondarchuk, V.I.; Moiseeva, I.V.; Khripta, N.I. Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment. Mater. Sci. Eng. A 2015, 641, 348–359. [Google Scholar] [CrossRef]
- Ikeda, S.; Kobayashi, Y.; Matsui, A. Evaluation of shot peening impact force by AE method. In Proceedings of the 12th International Conference on Shot Peening, Goslar, Germany, 15–18 September 2014; pp. 244–249. [Google Scholar]
- DeClark, B.W.; Loersch, J.F.; Neal, J.W.; Weber, J.H. Shot Peening Intensity Detector. U.S. Patent 4,470,292, 11 September 1984. [Google Scholar]
- Statnikov, E.S.; Vityazev, V.N.; Korolkov, O.V. Study of comparative characteristics of ultrasonic impact and optimization of deformation treatment processes. In Proceedings of the 5th World Congress on Ultrasonics, Paris, France, 5–7 September 2003. [Google Scholar]
- ASTM International. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials; ASTM E466-15; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- OmniSint-160. 2015. Available online: http://lasersint.com/wordpress/?page_id=449 (accessed on 12 September 2019).
- GE Additive, Ti-6AI-4V Grade 23. 2019. Available online: https://www.ge.com/additive/additive-manufacturing/materials/apc/ti-6al-4v-23 (accessed on 27 August 2019).
- EOS, EOS M290/400W Standard, AD, WEIL. 2014. Available online: https://www.sculpteo.com/media/imagecontent/EOS-Titanium-Ti64ELI.pdf (accessed on 28 August 2019).
- Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 2013, 578, 230–239. [Google Scholar] [CrossRef]
- Dimla, D.E.; Hopkinson, N.; Rothe, H. Investigation of complex rapid EDM electrodes for rapid tooling applications. Int. J. Adv. Manuf. Technol. 2004, 23, 249–255. [Google Scholar] [CrossRef]
- Emery Cloth Sheet 220–240 Grit. 2019. Available online: https://www.stuller.com/products/10-11014/56351/?groupId=190773 (accessed on 27 August 2019).
- Ultrasonics, D. 20k1200w Ultrasonic Portable Spot Welding Machine. 2019. Available online: http://www.dowellsonic.com/product/20k1200w-ultrasonic-portable-spot-welding-machine.html (accessed on 28 August 2019).
- CNC Parts Department. Fagor 8035 CNC. Available online: https://www.cncpd.com/product-category/cnc-controllers/fagor-automation/fagor-8035/ (accessed on 28 August 2019).
- Günther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Tröster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Zhang, H.; Chiang, R.; Qin, H.; Ren, Z.; Hou, X.; Lin, D.; Doll, G.L.; Vasudevan, V.K.; Dong, Y.; Ye, C. The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int. J. Fatigue 2017, 103, 136–146. [Google Scholar] [CrossRef]
- Mc Master-Carr. Compression Springs. 2019. Available online: https://www.mcmaster.com/springs (accessed on 17 August 2019).
- CIMSTAR® QUAL STAR C Product Information Flyer. 2011. Available online: http://www.cimcool.com/wp-content/uploads/manage-msdspif/pif/CIMSTAR%20QUALSTAR%20C.pdf (accessed on 21 Aug 2019).
- MTS, MTS 810 & 858 Test Systems. 2006. Available online: https://www.upc.edu/sct/documents_equipament/d_77_id-412.pdf (accessed on 21 July 2019).
- AmScope, 18MP USB 3.0 Color CMOS C-Mount Microscope Camera with Reduction Lens. 2019. Available online: https://www.amscope.com/cameras/18mp-usb3-0-real-time-live-video-microscope-digital-camera.html (accessed on 19 July 2019).
- Zeiss, ZEISS GeminiSEM. 2019. Available online: https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes/geminisem.html (accessed on 18 August 2019).
- Bruker, The Gold Standard in Stylus Profilometry. 2019. Available online: https://www.bruker.com/products/surface-and-dimensional-analysis/stylus-profilometers/dektak-xt/overview.html (accessed on 15 August 2019).
- ASTM International. Standard Test Methods for Rockwell Hardness of Metallic Materials; ASTM E18-18a; ASTM International: West Conshocken, PA, USA, 2018. [Google Scholar]
- Bowers Group. Portable Hardness Tester IPX-360. Available online: https://www.bowersgroup.co.uk/ca/product-range/testing-instruments/portable/ipx-360-portable-hardness-tester-ipx-360.html (accessed on 18 August 2019).
- Flitzpatrick, M.E.; Fry, A.T.; Holdway, P.; Kandil, F.A.; Shackleton, J.; Suominen, L. Determination of Residual Stresses by X-ray Diffraction. In Measurement Good Practice Guide No. 52; National Physical Laboratory: Teddington, UK, 2005; Volume 52, Issue 2, pp. 1–68. [Google Scholar]
- Ruud, C.O. A Review of Nondestructive Methods for Residual Stress Measurement. JOM 1981, 33, 35–40. [Google Scholar] [CrossRef]
- Schajer, G.S.; Ruud, C.O. Practical Residual Stress Measurement Methods; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Malvern Panalytical. Empyrean. 2019. Available online: https://www.malvernpanalytical.com/en/products/product-range/empyrean-range/empyrean (accessed on 21 August 2019).
- Zyl, I.V.; Yadroitsava, I.; Yadroitsev, I. Residual stress in ti6al4v objects produced by direct metal laser sintering. S. Afr. J. Ind. Eng. 2016, 27, 134–141. [Google Scholar]
- Novovic, D.; Dewes, R.C.; Aspinwall, D.K.; Voice, W.; Bowen, P. The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tools Manuf. 2004, 44, 125–134. [Google Scholar] [CrossRef]
- Teledyne LeCroy. WaveSurfer 3000 Oscilloscopes. 2019. Available online: https://teledynelecroy.com/options/productseries.aspx?mseries=466&groupid=234 (accessed on 28 August 2019).
- ANAMET, Mounting Polymers. 2016. Available online: http://www.anamet.com/media/other/357089-CATALOG_6_mounting_EN.pdf (accessed on 11 July 2019).
- Allied High Tech Products. Metprep 3™ Grinder/Polisher with Power Head. 2019. Available online: http://www.alliedhightech.com/Equipment/metprep-3-grinder-polisher-with-powerhead (accessed on 11 August 2019).
- Sigma-Aldrich, Aluminum Oxide. 2019. Available online: https://www.sigmaaldrich.com/catalog/product/sigald/229423?lang=en®ion=CA (accessed on 8 August 2019).
- American Society for Testing and Materials. Standard Practice for Microetching Metals and Alloys; E 407–99; American Society for Testing and Materials: West Conshohocken, PA, USA, 1999. [Google Scholar]
- Deutsches Institut Fur Normung. DIN 50100: Load Controlled Fatigue Testing–Execution and Evaluation of Cyclic Tests at Constant Load Amplitudes on Metallic Specimens and Components; Deutsches Institut Fur Normung: Berlin, Germany, 2016. [Google Scholar]
- Alang, N.A.; Razak, N.A.; Miskam, A.K. Effect of Surface Roughness on Fatigue Life of Notched Carbon Steel. Int. J. Eng. Technol. 2011, 11, 160–163. [Google Scholar]
Specimen Number | 1 | 2 | 3 | Average |
---|---|---|---|---|
Untreated | 2.39 × 104 | 2.77 × 104 | 4.02 × 104 | 2.90 × 104 |
Treated | 8.47 × 104 | 8.84 × 104 | 9.63 × 104 | 8.97 × 104 |
Component | Treated—Plane 114 | Untreated—Plane 211 | ||
---|---|---|---|---|
Stress (MPa) | Error (MPa) | Stress (MPa) | Error (MPa) | |
−1.9 × 103 | 45 | −3.0 × 102 | 20 | |
−1.8 × 103 | 45 | −2.8 × 102 | 22 | |
−1.2 × 103 | 26 | −2.1 × 102 | 12 | |
27 | 6.0 | −0.9 | 2.7 | |
−1.1 | 6.0 | 1.1 | 2.5 | |
37 | 22 | 19 | 9.3 | |
6.0 × 102 | 48 | 84 | 21 | |
−1.6 × 103 | 68 | −2.7 × 102 | 32 |
Component | Treated—Plane 114 | Untreated—Plane 211 | ||
---|---|---|---|---|
Strain | Error | Strain | Error | |
−7.2 × 10−3 | 1.8 × 10−4 | −1.1 × 10−3 | 7.9 × 10−5 | |
−6.7 × 10−3 | 1.7 × 10−4 | −9.7 × 10−4 | 7.8 × 10−5 | |
2.1 × 10−6 | −4.5 × 10−8 | −1.5 × 10−4 | 8.8 × 10−6 | |
3.2 × 10−4 | 7.4 × 10−5 | −1.0 × 10−5 | 3.4 × 10−5 | |
−1.3 × 10−5 | 7.4 × 10−5 | 1.2 × 10−5 | 3.1 × 10−5 | |
4.4 × 10−4 | 2.7 × 10−4 | 2.2 × 10−4 | 1.2 × 10−4 | |
4.7 × 10−3 | 5.6 × 10−4 | 6.6 × 10−4 | 2.4 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, P.; Malz, S.; Trudel, E.; Nosir, S.; ElSayed, M.S.A.; Kok, L. Effects of Ultrasonic Impact Treatment on the Stress-Controlled Fatigue Performance of Additively Manufactured DMLS Ti-6Al-4V Alloy. Appl. Sci. 2019, 9, 4787. https://doi.org/10.3390/app9224787
Walker P, Malz S, Trudel E, Nosir S, ElSayed MSA, Kok L. Effects of Ultrasonic Impact Treatment on the Stress-Controlled Fatigue Performance of Additively Manufactured DMLS Ti-6Al-4V Alloy. Applied Sciences. 2019; 9(22):4787. https://doi.org/10.3390/app9224787
Chicago/Turabian StyleWalker, Peter, Sinah Malz, Eric Trudel, Shaza Nosir, Mostafa S.A. ElSayed, and Leo Kok. 2019. "Effects of Ultrasonic Impact Treatment on the Stress-Controlled Fatigue Performance of Additively Manufactured DMLS Ti-6Al-4V Alloy" Applied Sciences 9, no. 22: 4787. https://doi.org/10.3390/app9224787
APA StyleWalker, P., Malz, S., Trudel, E., Nosir, S., ElSayed, M. S. A., & Kok, L. (2019). Effects of Ultrasonic Impact Treatment on the Stress-Controlled Fatigue Performance of Additively Manufactured DMLS Ti-6Al-4V Alloy. Applied Sciences, 9(22), 4787. https://doi.org/10.3390/app9224787