Towards Deep Integration of Electronics and Photonics
Abstract
:1. Introduction
2. Perspective Materials
3. Building Blocks of Hybrid Integrated Circuits
4. From Macroscopic to Microscopic Integration
5. More Quasiparticles
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Stockman, M.I.; Kneipp, K.; Bozhevolny, S.I.; Saha, S.; Dutta, A.; Ndukaife, J.; Kinsey, N.; Reddy, H.; Guler, U.; Shalaev, V.M.; et al. Roadmap on plasmonics. J. Opt. 2018, 20, 043001. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Agranovich, V.; Mills, D. Surface Polaritons; North-Holland Publishing Company: New York, NY, USA, 1982. [Google Scholar]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874. [Google Scholar] [CrossRef]
- Powell, C.; Swan, J. Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 1960, 118, 640. [Google Scholar] [CrossRef]
- Scholl, J.A.; Koh, A.L.; Dionne, J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421. [Google Scholar] [CrossRef] [PubMed]
- Pitarke, J.; Silkin, V.; Chulkov, E.; Echenique, P. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2006, 70, 1. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Stockman, M.I. Nanoplasmonic sensing and detection. Science 2015, 348, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83. [Google Scholar] [CrossRef]
- Stockman, M.I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.J.; Gómez, D.E.; Roberts, A. Plasmonic circuits for manipulating optical information. Nanophotonics 2017, 6, 543–559. [Google Scholar] [CrossRef]
- Liu, K.; Ye, C.R.; Khan, S.; Sorger, V.J. Review and perspective on ultrafast wavelength-size electro–optic modulators. Laser Photonics Rev. 2015, 9, 172–194. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, H.L.; Aliev, A.E.; Drachev, V.P. New mechanism of plasmons specific for spin-polarized nanoparticles. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soref, R.; Peale, R.E.; Buchwald, W. Longwave plasmonics on doped silicon and silicides. Opt. Express 2008, 16, 6507–6514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dionne, J.A.; Sweatlock, L.A.; Sheldon, M.T.; Alivisatos, A.P.; Atwater, H.A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 295–306. [Google Scholar] [CrossRef]
- Noginov, M.; Gu, L.; Livenere, J.; Zhu, G.; Pradhan, A.; Mundle, R.; Bahoura, M.; Barnakov, Y.A.; Podolskiy, V. Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 2011, 99, 021101. [Google Scholar] [CrossRef]
- Exarhos, G.J.; Zhou, X.D. Discovery-based design of transparent conducting oxide films. Thin Solid Films 2007, 515, 7025–7052. [Google Scholar] [CrossRef]
- Kulkarni, A.; Knickerbocker, S. Estimation and verification of the electrical properties of indium tin oxide based on the energy band diagram. J. Vac. Sci. Technol. A Vac. Surf. Films 1996, 14, 1709–1713. [Google Scholar] [CrossRef]
- Michelotti, F.; Dominici, L.; Descrovi, E.; Danz, N.; Menchini, F. Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 2009, 34, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Franzen, S.; Rhodes, C.; Cerruti, M.; Gerber, R.W.; Losego, M.; Maria, J.P.; Aspnes, D. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 2009, 34, 2867–2869. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Hu, X.; Chu, S.; Gong, Q. Epsilon-Near-Zero Photonics: A New Platform for Integrated Devices. Adv. Opt. Mater. 2018, 6, 1701292. [Google Scholar] [CrossRef]
- Caspani, L.; Kaipurath, R.; Clerici, M.; Ferrera, M.; Roger, T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; Di Falco, A.; Shalaev, V.; et al. Enhanced Nonlinear Refractive Index in ϵ-Near-Zero Materials. Phys. Rev. Lett. 2016, 116, 233901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.; De Leon, I.; Boyd, R. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Z.; Wu, K.; Ye, H. Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films. Sci. Technol. Adv. Mater. 2018, 19, 174–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Mak, C.L.; Dai, J.; Li, K.; Ye, H.; Leung, C.W. ITO/Au/ITO sandwich structure for near-infrared plasmonics. ACS Appl. Mater. Interfaces 2014, 6, 15743–15752. [Google Scholar] [CrossRef] [PubMed]
- Pollard, R.; Murphy, A.; Hendren, W.; Evans, P.; Atkinson, R.; Wurtz, G.; Zayats, A.; Podolskiy, V.A. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 2009, 102, 127405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, P.; Xia, F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Z.; Rodin, A.; Andreev, G.; Bao, W.; McLeod, A.; Wagner, M.; Zhang, L.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, A.; Polini, M.; Novoselov, K. Graphene plasmonics. Nat. Photonics 2012, 6, 749. [Google Scholar] [CrossRef]
- Ni, G.; McLeod, A.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.; Sunku, S.; Jiang, B.Y.; Hone, J.; Dean, C.R.; et al. Fundamental limits to graphene plasmonics. Nature 2018, 557, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, G.D.; Wallace, R.M.; Anthony, J. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef] [Green Version]
- Bohr, M.T.; Chau, R.S.; Ghani, T.; Mistry, K. The high-k solution. IEEE Spectr. 2007, 44, 29–35. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Bozhevolnyi, S.I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2012, 76, 016402. [Google Scholar] [CrossRef] [PubMed]
- Kolesov, R.; Grotz, B.; Balasubramanian, G.; Stöhr, R.J.; Nicolet, A.A.; Hemmer, P.R.; Jelezko, F.; Wrachtrup, J. Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 2009, 5, 470. [Google Scholar] [CrossRef]
- Alam, M.Z.; Aitchison, J.S.; Mojahedi, M. A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 2014, 8, 394–408. [Google Scholar] [CrossRef]
- Nezhad, M.P.; Tetz, K.; Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 2004, 12, 4072–4079. [Google Scholar] [CrossRef] [PubMed]
- Noginov, M.; Podolskiy, V.A.; Zhu, G.; Mayy, M.; Bahoura, M.; Adegoke, J.; Ritzo, B.; Reynolds, K. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 2008, 16, 1385–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandidier, J.; Des Francs, G.C.; Massenot, S.; Bouhelier, A.; Markey, L.; Weeber, J.C.; Finot, C.; Dereux, A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 2009, 9, 2935–2939. [Google Scholar] [CrossRef] [PubMed]
- De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stockman, M.I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanzha, E.I.; Weingold, R.; Nedosekin, D.A.; Sarimollaoglu, M.; Nolan, J.; Harrington, W.; Kuchyanov, A.S.; Parkhomenko, R.G.; Watanabe, F.; Nima, Z.; et al. Spaser as a biological probe. Nat. Commun. 2017, 8, 15528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melikyan, A.; Lindenmann, N.; Walheim, S.; Leufke, P.; Ulrich, S.; Ye, J.; Vincze, P.; Hahn, H.; Schimmel, T.; Koos, C.; et al. Surface plasmon polariton absorption modulator. Opt. Express 2011, 19, 8855–8869. [Google Scholar] [CrossRef] [PubMed]
- Neira, A.D.; Wurtz, G.A.; Zayats, A.V. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity. Photonics Res. 2018, 6, B1–B5. [Google Scholar] [CrossRef]
- Qiu, X.; Ruan, X.; Li, Y.; Zhang, F. Indium Tin Oxide Based Dual-Polarization Electro-Optic Intensity Modulator on a Single Silicon Waveguide. J. Lightw. Technol. 2018, 36, 2563–2571. [Google Scholar] [CrossRef]
- Sinatkas, G.; Pitilakis, A.; Zografopoulos, D.C.; Beccherelli, R.; Kriezis, E.E. Transparent conducting oxide electro–optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model. J. Appl. Phys. 2017, 121, 023109. [Google Scholar] [CrossRef]
- Vasudev, A.P.; Kang, J.H.; Park, J.; Liu, X.; Brongersma, M.L. Electro–optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 2013, 21, 26387–26397. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.; Sinatkas, G.; Lotfi, E.; Shahada, L.; Swillam, M.; Kriezis, E.; Beccherelli, R. Amplitude modulation in infrared metamaterial absorbers based on electro–optically tunable conducting oxides. Appl. Phys. A 2018, 124, 105. [Google Scholar] [CrossRef]
- Ayata, M.; Fedoryshyn, Y.; Heni, W.; Baeuerle, B.; Josten, A.; Zahner, M.; Koch, U.; Salamin, Y.; Hoessbacher, C.; Haffner, C.; et al. High-speed plasmonic modulator in a single metal layer. Science 2017, 358, 630–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dionne, J.A.; Diest, K.; Sweatlock, L.A.; Atwater, H.A. PlasMOStor: A metal- oxide- Si field effect plasmonic modulator. Nano Lett. 2009, 9, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B.; Saha, S.; et al. Low-loss plasmon-assisted electro–optic modulator. Nature 2018, 556, 483. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Papadakis, G.; Burgos, S.P.; Chander, K.; Kriesch, A.; Pala, R.; Peschel, U.; Atwater, H.A. Nanoscale conducting oxide PlasMOStor. Nano Lett. 2014, 14, 6463–6468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolajsen, T.; Leosson, K.; Bozhevolnyi, S.I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 2004, 85, 5833–5835. [Google Scholar] [CrossRef]
- Sorger, V.J.; Lanzillotti-Kimura, N.D.; Ma, R.M.; Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhao, W.; Shi, K. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics J. 2012, 4, 735–740. [Google Scholar]
- Amin, R.; Khurgin, J.B.; Sorger, V.J. Waveguide-based electro-absorption modulator performance: Comparative analysis. Opt. Express 2018, 26, 15446. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Huo, Y.; Harris, J.S.; Zhou, Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technol. Lett. 2013, 25, 2081–2084. [Google Scholar] [CrossRef]
- Kim, S.; Qi, M. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide. Opt. Express 2015, 23, 9968–9978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, I.A.; Kosolobov, S.S.; Maimistov, A.I.; Drachev, V.P. Conversion of light polarisation in asymmetric plasmonic waveguides. Quantum Electron. 2018, 48, 1153. [Google Scholar] [CrossRef]
- An, S.; Kwon, O.K. Integrated InP polarization rotator using the plasmonic effect. Opt. Express 2018, 26, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Ju, J.J.; Park, S.; Kim, M.S.; Park, S.K.; Lee, M.H. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 2008, 16, 13133–13138. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, F.; Gómez, D.E.; Davis, T.J. Measuring subwavelength phase differences with a plasmonic circuit—An example of nanoscale optical signal processing. Opt. Lett. 2014, 39, 2994–2997. [Google Scholar] [CrossRef] [PubMed]
- Tame, M.S.; McEnery, K.; Özdemir, Ş.; Lee, J.; Maier, S.; Kim, M. Quantum plasmonics. Nat. Phys. 2013, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Pines, D. A collective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 1953, 92, 626. [Google Scholar] [CrossRef]
- Elson, J.; Ritchie, R. Photon interactions at a rough metal surface. Phys. Rev. B 1971, 4, 4129. [Google Scholar] [CrossRef]
- Huttner, B.; Barnett, S.M. Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 1992, 46, 4306. [Google Scholar] [CrossRef] [PubMed]
- Crowell, J.; Ritchie, R. Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 1968, 172, 436. [Google Scholar] [CrossRef]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakonas, J.S.; Lee, H.; Kelaita, Y.A.; Atwater, H.A. Two-plasmon quantum interference. Nat. Photonics 2014, 8, 317. [Google Scholar] [CrossRef] [Green Version]
- Altewischer, E.; Van Exter, M.; Woerdman, J. Plasmon-assisted transmission of entangled photons. Nature 2002, 418, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Manjavacas, A.; García de Abajo, F.J. Quantum finite-size effects in graphene plasmons. Acs Nano 2012, 6, 1766–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Esteban, R.; Borisov, A.G.; Baumberg, J.J.; Nordlander, P.; Lezec, H.J.; Aizpurua, J.; Crozier, K.B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495. [Google Scholar] [CrossRef] [PubMed]
- De Leon, N.P.; Lukin, M.D.; Park, H. Quantum plasmonic circuits. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Wiley, B.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species. Langmuir 2005, 21, 8077–8080. [Google Scholar] [CrossRef] [PubMed]
- Falk, A.L.; Koppens, F.H.; Chun, L.Y.; Kang, K.; de Leon Snapp, N.; Akimov, A.V.; Jo, M.H.; Lukin, M.D.; Park, H. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 2009, 5, 475. [Google Scholar] [CrossRef]
- Chang, D.E.; Sørensen, A.S.; Demler, E.A.; Lukin, M.D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 2007, 3, 807. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, K.M.; Boca, A.; Miller, R.; Boozer, A.D.; Northup, T.E.; Kimble, H.J. Photon blockade in an optical cavity with one trapped atom. Nature 2005, 436, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopfield, J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555. [Google Scholar] [CrossRef]
- Pshenichnyuk, S.A.; Rakhmeyev, R.G.; Asfandiarov, N.L.; Komolov, A.S.; Modelli, A.; Jones, D. Can the Electron-Accepting Properties of Odorants Be Involved in Their Recognition by the Olfactory System? J. Phys. Chem. Lett. 2018, 9, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.A.; Modelli, A.; Komolov, A.S. Interconnections between dissociative electron attachment and electron-driven biological processes. Int. Rev. Phys. Chem. 2018, 37, 125–170. [Google Scholar] [CrossRef]
- Pshenichnyuk, S.A.; Modelli, A.; Vorob’ev, A.S.; Asfandiarov, N.L.; Nafikova, E.P.; Rakhmeyev, R.G.; Galeev, R.V.; Komolov, A.S. Fragmentation of chlorpyrifos by thermal electron attachment: A likely relation to its metabolism and toxicity. Phys. Chem. Chem. Phys. 2018, 20, 22272–22283. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.; Pshenichnyuk, I.; Nafikova, E.; Asfandiarov, N. Dissociative electron attachment in selected haloalkanes. Rapid Commun. Mass Spectrom. 2006, 20, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.; Lomakin, G.; Fokin, A.; Pshenichnyuk, I.; Asfandiarov, N. Temperature dependence of the mean autodetachment lifetime of the p-benzoquinone molecular radical anion. Rapid Commun. Mass Spectrom. 2006, 20, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, I. Interaction of Electrons with Vibrating Molecules: Molecular Electronic Applications; LAP LAMBERT Academic Publishing: Riga, Latvia, 2012. [Google Scholar]
- Pshenichnyuk, I.A.; Čížek, M. Motor effect in electron transport through a molecular junction with torsional vibrations. Phys. Rev. B 2011, 83, 165446. [Google Scholar] [CrossRef] [Green Version]
- Lagoudakis, K. The Physics of Exciton-Polariton Condensates; EPFL Press: Lausanne, Switzerland, 2013. [Google Scholar]
- Pshenichnyuk, I.A. Pressure-induced vortex rings multiplication as a source of vorticity in superfluids. Lett. Mater. 2015, 5, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Pshenichnyuk, I.A.; Berloff, N.G. Inelastic scattering of xenon atoms by quantized vortices in superfluids. Phys. Rev. B 2016, 94, 184505. [Google Scholar] [CrossRef] [Green Version]
- Pshenichnyuk, I. Static and dynamic properties of heavily doped quantum vortices. New J. Phys. 2017, 19, 105007. [Google Scholar] [CrossRef]
- Pshenichnyuk, I.A. Pair interactions of heavy vortices in quantum fluids. Phys. Lett. A 2018, 382, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Berloff, N.G.; Silva, M.; Kalinin, K.; Askitopoulos, A.; Töpfer, J.D.; Cilibrizzi, P.; Langbein, W.; Lagoudakis, P.G. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 2017, 16, 1120. [Google Scholar] [CrossRef] [PubMed]
- Zasedatelev, A.V.; Baranikov, A.V.; Urbonas, D.; Scafirimuto, F.; Scherf, U.; Stöferle, T.; Mahrt, R.F.; Lagoudakis, P.G. A room-temperature organic polariton transistor. Nat. Photonics 2019, 13, 378. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G.D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Balci, S.; Kocabas, C.; Ates, S.; Karademir, E.; Salihoglu, O.; Aydinli, A. Tuning surface plasmon–exciton coupling via thickness dependent plasmon damping. Phys. Rev. B 2012, 86, 235402. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.E.; Roberts, A.; Davis, T.J.; Vernon, K.C. Surface plasmon hybridization and exciton coupling. Phys. Rev. B 2012, 86, 035411. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pshenichnyuk, I.A.; Kosolobov, S.S.; Drachev, V.P. Towards Deep Integration of Electronics and Photonics. Appl. Sci. 2019, 9, 4834. https://doi.org/10.3390/app9224834
Pshenichnyuk IA, Kosolobov SS, Drachev VP. Towards Deep Integration of Electronics and Photonics. Applied Sciences. 2019; 9(22):4834. https://doi.org/10.3390/app9224834
Chicago/Turabian StylePshenichnyuk, Ivan A., Sergey S. Kosolobov, and Vladimir P. Drachev. 2019. "Towards Deep Integration of Electronics and Photonics" Applied Sciences 9, no. 22: 4834. https://doi.org/10.3390/app9224834
APA StylePshenichnyuk, I. A., Kosolobov, S. S., & Drachev, V. P. (2019). Towards Deep Integration of Electronics and Photonics. Applied Sciences, 9(22), 4834. https://doi.org/10.3390/app9224834