Key Technologies and Development Trends of 5G Optical Networks
Abstract
:Featured Application
Abstract
1. Introduction
2. Literature Review
2.1. Development of 5G Optical Networks
2.2. Technology Network Analysis
3. Research Design
3.1. Search Strategies and Data Sources
3.2. Centrality Analysis for the Technology Network
4. Empirical Study
4.1. Overview of 5G Optical Networks
4.2. Key Technology Network Analysis
4.3. Technical and Development Trends of 5G Optical Networks
5. Conclusions
5.1. Discussion
5.2. Limitations and Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
CPC Categories | Meaning |
---|---|
H04B7 | Radio transmission systems, i.e., using radiation field |
H04B10 | Transmission systems employing electromagnetic waves other than radio-waves, e.g., infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g., quantum communication |
H04J14 | Optical multiplex systems |
H04L5 | Arrangements affording multiple use of the transmission path |
H04L25 | Baseband systems |
H04L27 | Modulated-carrier systems |
H04Q11 | Selecting arrangements for multiplex systems |
H04W12 | Security arrangements, e.g., access security or fraud detection; authentication, e.g., verifying user identity or authorization; protecting privacy or anonymity |
H04W40 | Communication routing or communication path finding |
H04W72 | Local resource management, e.g., wireless traffic scheduling or selection or allocation of wireless resources |
H04W80 | Wireless network protocols or protocol adaptations to wireless operation |
H04W84 | Network topologies |
H04W88 | Devices specially adapted for wireless communication networks, e.g., terminals, base stations or access point devices |
References
- Horvath, T.; Munster, P.; Dubravec, L.; Filka, M. Novel rogue optical network unit detection algorithm for gigabit passive optical networks. Opt. Appl. 2016, 46, 421–433. [Google Scholar]
- Sarigiannidis, P.; Kakali, V.; Fragakis, M. An adaptive energy-efficient framework for time-constrained optical backbone networks. Int. J. Commun. Syst. 2017, 30, 1–26. [Google Scholar] [CrossRef]
- Shao, Q.; Gan, C.; Wang, R. Extensible optical access network enabling multistage protections and data aggregation based on tangent rings. Int. J. Commun. Syst. 2014, 27, 2775–2784. [Google Scholar] [CrossRef]
- ResearchAndMarkets. Optical Networking Opportunities in 5G Wireless Networks: 2017–2026; ResearchAndMarkets: Dublin, Ireland, 2017. [Google Scholar]
- Wright, J. Future Telecoms Infrastructure Review; Department for Digital, Culture, Media & Sport: London, UK, 2018. [Google Scholar]
- Zhang, J.; Ji, Y.; Yu, H.; Huang, X.; Li, H. Experimental demonstration of fronthaul flexibility for enhanced CoMP service in 5G radio and optical access networks. Opt. Express 2017, 25, 21247–21258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, Z.; Zhang, J.; Wang, X. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking. Opt. Express 2016, 24, 16659–16673. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; He, Y.; Zhang, J.; Ji, Y.; Bai, W.; Lee, Y. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks. Opt. Express 2016, 24, 8666–8678. [Google Scholar] [CrossRef] [PubMed]
- Communications Industry Researchers. Optical Networking Opportunities in the 5G Infrastructure Market: 2019 to 2028; Communications Industry Researchers: Crozet, VA, USA, 2019. [Google Scholar]
- ResearchAndMarkets. 5G Infrastructure Market; ResearchAndMarkets: Dublin, Ireland, 2019. [Google Scholar]
- Gwak, J.H.; Sohn, S.Y. Identifying the trends in wound-healing patents for successful investment strategies. PLoS ONE 2017, 12, e0174203. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Lee, J.; Lee, S. International trends in technological progress: Evidence from patent citations, 1980-2011. Econ. J. 2017, 127, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Song, Y.K.; Lee, S. Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations. Telecommun. Policy 2016, 40, 956–970. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, X.; Wang, J.; Chen, X.; Wang, L. Bidirectional 10 Gb/s/λ, channel-reuse, long-reach DWDM-PON employing tunable optical transceiver with optical intensity detection-based wavelength management. Opt. Quantum Electron. 2015, 47, 2767–2779. [Google Scholar] [CrossRef]
- Geng, Z.; Kong, D.; Corcoran, B.; Guan, P.; Da Ros, F.; Porto da Silva, E.; Oxenløwe, L.K.; Lowery, A.J. All-optical OFDM demultiplexing with optical partial fourier transform and coherent sampling. Opt. Lett. 2019, 44, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Mandalawi, Y.N.A.; Yaakob, S.; Adnan, W.A.W.; Yaacob, M.H.; Zan, Z. Laser phase noise effect and reduction in self-homodyne optical OFDM transmission system. Opt. Lett. 2019, 44, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Sun, Y.; Zhang, Y.; Zhang, P.; Niu, J.; Ji, Y. Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber. Opt. Express 2019, 27, 5125–5135. [Google Scholar] [CrossRef] [PubMed]
- CTIA. The Global Race to 5G; CTIA: Washington, DC, USA, 2018. [Google Scholar]
- IEEE. IEEE 802.1 Working Group March 10-15, 2019 Plenary Session Vancouver, BC, Canada. Available online: https://1.ieee802.org/march-2019-plenary-meeting-in-vancouver-bc-canada/ (accessed on 4 November 2019).
- Capellari, S.; De Stefano, D. Academic inventors, allocation of patent rights and knowledge diffusion: Subnetwork structures in university-owned and universityinvented patents in two Italian universities. Sci. Public Policy 2016, 43, 585–593. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, J. The core-peripheral structure of international knowledge flows: Evidence from patent citation data. R D Manag. 2016, 46, 62–79. [Google Scholar] [CrossRef]
- Sonmez, Z. Inventor mobility and the geography of knowledge flows: Evidence from the US biopharmaceutical industry. Sci. Public Policy 2017, 44, 670–682. [Google Scholar] [CrossRef]
- Huenteler, J.; Ossenbrink, J.; Schmidt, T.S.; Hoffmann, V.H. How a product’s design hierarchy shapes the evolution of technological knowledge-evidence from patent-citation networks in wind power. Res. Policy 2016, 45, 1195–1217. [Google Scholar] [CrossRef]
- Yoon, J.; Park, Y.; Kim, M.; Lee, J.; Lee, D. Tracing evolving trends in printed electronics using patent information. J. Nanoparticle Res. 2014, 16, 1–15. [Google Scholar] [CrossRef]
- De Prato, G.; Nepelski, D. Global technological collaboration network: Network analysis of international co-inventions. J. Technol. Transf. 2014, 39, 358–375. [Google Scholar] [CrossRef]
- Fonseca, B.P.F.; Fernandes, E.; Fonseca, M.V.A. Collaboration in science and technology organizations of the public sector: A network perspective. Sci. Public Policy 2017, 44, 37–49. [Google Scholar] [CrossRef]
- Park, I.; Jeong, Y.; Yoon, B.; Mortara, L. Exploring potential R&D collaboration partners through patent analysis based on bibliographic coupling and latent semantic analysis. Technol. Anal. Strateg. Manag. 2015, 27, 759–781. [Google Scholar]
- Zahringer, K.; Kolympiris, C.; Kalaitzandonakes, N. Time to patent at the USPTO: The case of emerging entrepreneurial firms. J. Technol. Transf. 2018, 43, 923–952. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, W.K.; Sohn, S.Y. Patent network analysis and quadratic assignment procedures to identify the convergence of robot technologies. PLoS ONE 2016, 11, e0165091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, C.S. Structural embeddedness and position: Evidences from affiliation of patent with technological classifications. Technol. Anal. Strateg. Manag. 2018, 30, 1148–1165. [Google Scholar] [CrossRef]
- Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34. [Google Scholar] [CrossRef]
- Bass, S.D.; Kurgan, L.A. Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics 2010, 82, 217–241. [Google Scholar] [CrossRef]
- Ko, S.S.; Ko, N.; Kim, D.; Park, H.; Yoon, J. Analyzing technology impact networks for R&D planning using patents: Combined application of network approaches. Scientometrics 2014, 101, 917–936. [Google Scholar]
- Hao, J.; Yan, Y.; Gong, L.; Wang, G.; Lin, J. Knowledge map-based method for domain knowledge browsing. Decis. Support Syst. 2013, 61, 106–114. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, S.N. Mapping the knowledge structure of frailty in journal articles by text network analysis. PLoS ONE 2018, 13, e0196104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireni-Saban, L.; Borohowitch, E. Brokers and entrepreneurs in human stem cell governance networks in the United States. Rev. Policy Res. 2017, 5, 660–681. [Google Scholar] [CrossRef]
- Walsh, J.N. Developing new categories of knowledge acquisition, translation and dissemination by technological gatekeepers. Int. J. Inf. Manag. 2015, 35, 594–605. [Google Scholar] [CrossRef]
- Choe, H.; Lee, D. The structure and change of the research collaboration network in Korea (2000–2011): Network analysis of joint patents. Scientometrics 2017, 111, 917–939. [Google Scholar] [CrossRef]
- García Muñiz, A.S.; Cuervo, M.R.V. Exploring research networks in Information and Communication Technologies for energy efficiency: An empirical analysis of the 7th Framework Programme. J. Clean. Prod. 2018, 198, 1133–1143. [Google Scholar] [CrossRef]
- Ericsson. The 5G Business Potential; Ericsson: Stockholm, Sweden, 2017. [Google Scholar]
- Eghbal, M.K.; Shadaram, M. Expandable high-capacity wavelength division multiplex-over-optical code division multiple access millimeter wave radio-over-fiber system. Opt. Eng. 2019, 58, 1–9. [Google Scholar] [CrossRef]
Indicator | Formula |
---|---|
Closeness centrality | represents the distance from node i to node j. |
Betweenness centrality | represents the number of shortest paths from node j to node k; represents the number of shortest paths that must pass through node i to get from node j to node k. |
Fragmentation centrality | represents the distance from node i to node j. n represents the total number of nodes. |
Ranking | CPC Code | Frequency of Appearance | Percentage |
---|---|---|---|
1 | H04B10 | 146 | 10.38% |
2 | H04W88 | 92 | 6.54% |
3 | H04B7 | 76 | 5.40% |
4 | H04L5 | 75 | 5.33% |
5 | H04J14 | 68 | 4.83% |
6 | H04Q11 | 66 | 4.69% |
7 | H04W72 | 66 | 4.69% |
8 | H04L27 | 63 | 4.48% |
9 | H04W84 | 62 | 4.41% |
10 | H04L25 | 43 | 3.06% |
Ranking | Patentee | Number of Patents | Percentage | Average Age of Patents |
---|---|---|---|---|
1 | Huawei Technologies CO., LTD. | 11 | 8.87% | 1 |
2 | Smart Mobile INC. | 8 | 6.45% | 4 |
3 | Telefonaktiebolaget LM Ericsson (publ) | 7 | 5.65% | 1 |
4 | AT&T Intellectual Property I, L.P. | 6 | 4.84% | 2 |
5 | Inphi Corporation | 6 | 4.84% | 2 |
6 | Dali Research (Northwind) LLC | 6 | 4.84% | 3 |
7 | Futurewei Technologies INC. | 5 | 4.03% | 2 |
8 | Corning Optical Communications LLC | 5 | 4.03% | 2 |
9 | Google LLC | 3 | 2.42% | 2 |
10 | Nippon Telegraph and Telephone Corporation | 3 | 2.42% | 2 |
CPC | Closeness Centrality | CPC | Betweenness Centrality | CPC | Fragmentation Centrality |
---|---|---|---|---|---|
H04W88 | 90 | H04W88 | 696.273 | H04W88 | 0.470 |
H04W72 | 80 | H04B10 | 470.019 | H04B10 | 0.468 |
H04Q11 | 78.5 | H04L5 | 367.544 | H04L5 | 0.467 |
H04W84 | 77.5 | H04W72 | 297.066 | H04Q11 | 0.466 |
H04L5 | 77 | H04Q11 | 286.362 | H04W72 | 0.465 |
Centrality Indicators | Focuses in the Early Stage | Focuses in the Later Stage | New Technology Domains | Eliminated Technology Domains |
---|---|---|---|---|
Closeness centrality | H04W88, H04W84, H04W72, H04W40, H04Q11 | H04W88, H04B10, H04Q11, H04L5, H04W72 | H04B10, H04L5 | H04W84, H04W40 |
Betweenness centrality | H04W88, H04B10, H04W84, H04W72, H04W12 | H04W88, H04B10, H04Q11, H04L5, H04W84 | H04Q11, H04L5 | H04W72, H04W12 |
Fragmentation centrality | H04W88, H04W84, H04B10, H04W72, H04L5 | H04W88, H04B10, H04Q11, H04L5, H04W72 | H04Q11 | H04W84 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-H. Key Technologies and Development Trends of 5G Optical Networks. Appl. Sci. 2019, 9, 4835. https://doi.org/10.3390/app9224835
Chang S-H. Key Technologies and Development Trends of 5G Optical Networks. Applied Sciences. 2019; 9(22):4835. https://doi.org/10.3390/app9224835
Chicago/Turabian StyleChang, Shu-Hao. 2019. "Key Technologies and Development Trends of 5G Optical Networks" Applied Sciences 9, no. 22: 4835. https://doi.org/10.3390/app9224835
APA StyleChang, S. -H. (2019). Key Technologies and Development Trends of 5G Optical Networks. Applied Sciences, 9(22), 4835. https://doi.org/10.3390/app9224835