Time-Dependent Probabilistic Approach of Failure Mode and Effect Analysis
Abstract
:1. Introduction
2. Time-Dependent FMEA Model (TD-FMEA Model)
2.1. Modeling Procedure
2.2. Risk Evaluation Modeling
2.2.1. Occurrence Time of a Failure and Its Failure-Cause
2.2.2. Detection Time of a Failure-Cause
2.2.3. Loss of Failure
2.3. Loss Evaluation
2.3.1. Expected Value of Loss
2.3.2. Risk-Prioritization Metric
3. Application
3.1. Parameters Setting of RPM and RPN Values
3.2. Comparative Analysis of RPM and RPN
4. Conclusions
- (i)
- In traditional FMEAs, risks can be assessed on a ranking basis, making it an easy-to-use approach when data is difficult to obtain. In the big data world, however, the application of a numerical-based TD-FMEA approach will enable more accurate assessment of risk.
- (ii)
- In traditional FMEAs, the results of a risk assessment may depend on the subjective opinion of the expert. On the other hand, in the case of the TD-FMEA approach, the objectivity of the result is secured based on probability.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1.00∙E+00 | 7.65∙E−01 | 4.39∙E−01 | 2.72∙E−01 | 1.35∙E−01 | 6.01∙E−02 | 2.69∙E−02 | 9.81∙E−03 | 3.10∙E−03 | 9.81∙E−04 | ||
1st | 9.62∙E−07 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.9 | 5.2 | 17.6 | 122.3 |
2nd | 9.62∙E−06 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 4.1 | 5.5 | 15.6 | 101.8 | 779.1 |
3rd | 9.62∙E−05 | 3.7 | 3.7 | 3.7 | 3.8 | 4.4 | 6.7 | 16.6 | 81.7 | 582.8 | 3957.5 |
4th | 7.22∙E−04 | 3.8 | 3.9 | 4.2 | 4.8 | 7.5 | 19.1 | 65.1 | 335.4 | 2070.7 | 11,132.7 |
5th | 3.61∙E−03 | 4.3 | 4.5 | 5.7 | 8.0 | 17.0 | 53.0 | 182.3 | 833.3 | 4159.8 | 17,546.2 |
6th | 1.81∙E−02 | 5.9 | 6.8 | 10.5 | 17.3 | 42.4 | 131.6 | 405.0 | 1519.6 | 5981.7 | 20,942.4 |
7th | 7.40∙E−02 | 9.6 | 11.9 | 20.3 | 34.9 | 83.5 | 232.4 | 621.3 | 1965.1 | 6720.4 | 21,883.9 |
8th | 1.93∙E−01 | 14.2 | 17.9 | 30.9 | 52.1 | 116.8 | 296.2 | 725.7 | 2119.6 | 6912.5 | 22,092.6 |
9th | 5.85∙E−01 | 21.9 | 27.3 | 45.4 | 72.7 | 149.7 | 345.8 | 791.1 | 2198.9 | 6999.4 | 22,182.3 |
10th | 1.00∙E+00 | 26.0 | 32.2 | 52.0 | 81.1 | 160.9 | 360.0 | 807.3 | 2216.5 | 7017.6 | 22,204.6 |
References
- Stamatis, D.H. Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd ed.; ASQ Quality Press: Milwaukee, WI, USA, 1995. [Google Scholar]
- Liu, H.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl. 2013, 40, 828–838. [Google Scholar] [CrossRef]
- Geum, Y.; Cho, Y.; Park, Y. A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach. Math. Comput. Model. 2011, 54, 3126–3142. [Google Scholar] [CrossRef]
- Santhosh, D.; Vinodh, S. Application of FMEA to an automotive leaf spring manufacturing organization. TQM J. 2012, 24, 260–274. [Google Scholar]
- Yazdi, M.; Daneshvar, S.; Setareh, H. An extension to Fuzzy Developed Failure Mode and Effects Analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 2017, 98, 113–123. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Qin, Y.; Fu, Y. A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Saf. Sci. 2018, 110, 152–163. [Google Scholar] [CrossRef]
- Fattahi, R.; Khalilzadeh, M. Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Saf. Sci. 2018, 102, 290–300. [Google Scholar] [CrossRef]
- Mentes, A.; Ozen, E. A hybrid risk analysis method for a yacht fuel system safety. Saf. Sci. 2015, 79, 94–104. [Google Scholar] [CrossRef]
- Zhou, Q.; Thai, V.V. Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Saf. Sci. 2016, 83, 74–79. [Google Scholar] [CrossRef]
- Maniram Kumar, A.; Rajakarunakaran, S.; Pitchipoo, P.; Vimalesan, R. Fuzzy based risk prioritisation in an auto LPG dispensing station. Saf. Sci. 2018, 101, 231–247. [Google Scholar] [CrossRef]
- Rhee, S.J.; Ishii, K. Using cost based FMEA to enhance reliability and serviceability. Adv. Eng. Inform. 2003, 17, 179–188. [Google Scholar] [CrossRef]
- Dong, C. Failure mode and effects analysis based on fuzzy utility cost estimation. Int. J. Qual. Reliab. Manag. 2007, 24, 958–971. [Google Scholar] [CrossRef]
- Von Ahsen, A. Cost-oriented failure mode and effects analysis. Int. J. Qual. Reliab. Manag. 2008, 25, 466–476. [Google Scholar] [CrossRef]
- Parracho Sant’Anna, A. Probabilistic priority numbers for failure modes and effects analysis. Int. J. Qual. Reliab. Manag. 2012, 29, 349–362. [Google Scholar] [CrossRef]
- Certa, A.; Hopps, F.; Inghilleri, R.; La Fata, C.M. A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: Application to the propulsion system of a fishing vessel. Reliab. Eng. Syst. Saf. 2017, 159, 69–79. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Liu, H. New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab. Eng. Syst. Saf. 2017, 167, 302–309. [Google Scholar] [CrossRef]
- Catelani, M.; Ciani, L.; Venzi, M. Failure modes, mechanisms and effect analysis on temperature redundant sensor stage. Reliab. Eng. Syst. Saf. 2018, 180, 425–433. [Google Scholar] [CrossRef]
- Kim, K.O.; Zuo, M.J. General model for the risk priority number in failure mode and effects analysis. Reliab. Eng. Syst. Saf. 2018, 169, 321–329. [Google Scholar] [CrossRef]
- Ding, X.; Su, Q.; You, J.; Liu, H. Improving risk evaluation in FMEA with a hybrid multiple criteria decision making method. Int. J. Qual. Reliab. Manag. 2015, 32, 763–782. [Google Scholar]
- Mohsen, O.; Fereshteh, N. An extended VIKOR method based on entropy measure for the failure modes risk assessment—A case study of the geothermal power plant (GPP). Saf. Sci. 2017, 92, 160–172. [Google Scholar] [CrossRef]
- Lo, H.; Liou, J.J.H.; Huang, C.; Chuang, Y. A novel failure mode and effect analysis model for machine tool risk analysis. Reliab. Eng. Syst. Saf. 2019, 183, 173–183. [Google Scholar] [CrossRef]
- Yousefi, S.; Alizadeh, A.; Hayati, J.; Baghery, M. HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: A study of automotive parts industry in Iran. Saf. Sci. 2018, 102, 144–158. [Google Scholar] [CrossRef]
- Sharma, R.K.; Sharma, P. System failure behavior and maintenance decision making using, RCA, FMEA and FM. J. Qual. Maint. Eng. 2010, 16, 64–88. [Google Scholar] [CrossRef]
- Guimarães, A.C.F.; Lapa, C.M.F.; Moreira, M.D.L. Fuzzy methodology applied to Probabilistic Safety Assessment for digital system in nuclear power plants. Nucl. Eng. Des. 2011, 241, 3967–3976. [Google Scholar] [CrossRef]
- Pillay, A.; Wang, J. Modified failure mode and effects analysis using approximate reasoning. Reliab. Eng. Syst. Saf. 2003, 79, 69–85. [Google Scholar] [CrossRef]
- Carmignani, G. An integrated structural framework to cost-based FMECA: The priority-cost FMECA. Reliab. Eng. Syst. Saf. 2009, 94, 861–871. [Google Scholar] [CrossRef]
- Zammori, F.; Gabbrielli, R. ANP/RPN: A Multi Criteria Evaluation of the Risk Priority Number. Qual. Reliab. Engng. Int. 2012, 28, 85–104. [Google Scholar] [CrossRef]
- Peeters, J.F.W.; Basten, R.J.I.; Tinga, T. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliab. Eng. Syst. Saf. 2018, 172, 36–44. [Google Scholar] [CrossRef]
- Jang, H.A.; Lee, M.K.; Hong, S.H.; Kwon, H.M. Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA. J. Korean Soc. Qual. Manag. 2016, 44, 373–388. [Google Scholar] [CrossRef]
- Ford Design Institute. FMEA Hand Book Version 4.1; Ford Design Institute: Dearborn, MI, USA, 2004; p. 290. [Google Scholar]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Belmont, CA, USA, 1996. [Google Scholar]
Potential Failure-Causes (O, S, D) | Modified | Fixed | Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
μ | ε | λ | Coefficients of Loss Function | λ | Coefficients of Loss Function | ||||||
Insufficient specification of Thickness (5, 7, 6) | FC11 | 6.01∙E−02 | 3.61∙E−03 | 1.81∙E−02 | 350 | 700 | 1000 | 1.81∙E−02 | 400 | 800 | 1000 |
Insufficient room between plates (6, 7, 4) | FC12 | 2.72∙E−01 | 1.81∙E−02 | 1.81∙E−02 | 350 | 700 | 1000 | 7.22∙E−04 | 450 | 900 | 2000 |
Design aspect of Improper variation in length (4, 7, 5) | FC13 | 1.35∙E−01 | 7.22∙E−04 | 1.81∙E−02 | 350 | 700 | 1000 | 1.93∙E−01 | 100 | 200 | 2500 |
No. of layers not meeting Requirements (3, 6, 4) | FC21 | 2.72∙E−01 | 9.60∙E−05 | 1.81∙E−02 | 350 | 600 | 1000 | 7.22∙E−04 | 150 | 300 | 3000 |
Young’s modulus of material changing with temperature (8, 6, 5) | FC22 | 1.35∙E−01 | 1.93∙E−01 | 1.81∙E−02 | 350 | 600 | 1000 | 9.60∙E−05 | 250 | 500 | 1500 |
Corner design of holding clamps (8, 6, 4) | FC23 | 2.72∙E−01 | 1.93∙E−01 | 1.81∙E−02 | 350 | 600 | 1000 | 7.40∙E−02 | 340 | 680 | 3500 |
Potential Failure mode | Reduced thickness of sheet |
Occurrence | Severity | Detection | ||||||
---|---|---|---|---|---|---|---|---|
Guideline | Rank for RPN | for RPM | Guideline | Rank for RPN | RPM | Guideline | Rank for RPN | for RPM |
≥ in 2 | 10 | 1.00∙E+00 | Hazardous | 10 | Absolute uncertainty | 10 | 9.81∙E−04 | |
1 in 3 | 9 | 5.85∙E−01 | Serious | 9 | Very remote | 9 | 3.10∙E−03 | |
1 in 8 | 8 | 1.93∙E−01 | Extreme | 8 | Remote | 8 | 9.81∙E−03 | |
1 in 20 | 7 | 7.40∙E−02 | Major | 7 | Very low | 7 | 2.69∙E−02 | |
1 in 80 | 6 | 1.81∙E−02 | Significant | 6 | Low | 6 | 6.01∙E−02 | |
1 in 400 | 5 | 3.61∙E−03 | Moderate | 5 | Moderate | 5 | 1.35∙E−01 | |
1 in 2000 | 4 | 7.22∙E−04 | Low | 4 | Moderately high | 4 | 2.72∙E−01 | |
1 in 15,000 | 3 | 9.62∙E−05 | Minor | 3 | High | 3 | 4.39∙E−01 | |
1 in 150,000 | 2 | 9.62∙E−06 | Very minor | 2 | Very high | 2 | 7.65∙E−01 | |
≤1 in 1,500,000 | 1 | 9.62∙E−07 | None | 1 | Almost certain | 1 | 1.00∙E+00 |
Case | Failure-Causes | ||||||
---|---|---|---|---|---|---|---|
Score | Priority | Score | Priority | Score | Priority | ||
(a) Fixed , , and | FC11 | 210 | 2 | 22 | 3 | 6180 | 1 |
FC12 | 168 | 4 | 17 | 4 | 958 | 4 | |
FC13 | 140 | 5 | 2 | 5 | 2103 | 2 | |
FC21 | 72 | 6 | 9∙E−02 | 6 | 945 | 5 | |
FC22 | 240 | 1 | 401 | 1 | 2081 | 3 | |
FC23 | 192 | 3 | 182 | 2 | 945 | 5 | |
(b) Fixed and Variable , and | FC11 | 210 | 2 | 23 | 4 | 6263 | 1 |
FC12 | 168 | 4 | 29 | 3 | 1597 | 6 | |
FC13 | 140 | 5 | 3 | 5 | 4147 | 2 | |
FC21 | 72 | 6 | 2∙E−01 | 6 | 1725 | 5 | |
FC22 | 240 | 1 | 532 | 1 | 2760 | 3 | |
FC23 | 192 | 3 | 428 | 2 | 2224 | 4 | |
(c) Fixed , and , and Variable | FC11 | 210 | 2 | 22 | 3 | 6180 | 1 |
FC12 | 168 | 4 | 7 | 4 | 404 | 4 | |
FC13 | 140 | 5 | 4 | 5 | 5465 | 2 | |
FC21 | 72 | 6 | 4∙E−02 | 6 | 402 | 5 | |
FC22 | 240 | 1 | 74 | 2 | 383 | 6 | |
FC23 | 192 | 3 | 330 | 1 | 1713 | 3 | |
(d) Variable , , and | FC11 | 210 | 2 | 23 | 3 | 6263 | 2 |
FC12 | 168 | 4 | 10 | 4 | 551 | 4 | |
FC13 | 140 | 5 | 9 | 5 | 11,911 | 1 | |
FC21 | 72 | 6 | 3∙E−02 | 6 | 289 | 6 | |
FC22 | 240 | 1 | 57 | 2 | 297 | 5 | |
FC23 | 192 | 3 | 897 | 1 | 4658 | 3 |
Division | Conventional FMEA | TD-FMEA |
---|---|---|
Risk Parameter (i) | O, S, and D | |
|
| |
Risk Measure (ii) | RPN score (ranking of O × S × D) | RPM score () |
|
|
- O: Occurrence; S: Severity; D: Detection;
- : Occurrence rate of failure-cause; : Occurrence rate of failure;
- : Detection rate of failure-cause; : Repair cost of failure-cause (coefficient of loss function);
- : Repair cost of failure (coefficient of loss function);
- : Opportunity cost per unit time because of the system down (coefficient of loss function).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.-a.; Min, S. Time-Dependent Probabilistic Approach of Failure Mode and Effect Analysis. Appl. Sci. 2019, 9, 4939. https://doi.org/10.3390/app9224939
Jang H-a, Min S. Time-Dependent Probabilistic Approach of Failure Mode and Effect Analysis. Applied Sciences. 2019; 9(22):4939. https://doi.org/10.3390/app9224939
Chicago/Turabian StyleJang, Hyeon-ae, and Seungsik Min. 2019. "Time-Dependent Probabilistic Approach of Failure Mode and Effect Analysis" Applied Sciences 9, no. 22: 4939. https://doi.org/10.3390/app9224939
APA StyleJang, H. -a., & Min, S. (2019). Time-Dependent Probabilistic Approach of Failure Mode and Effect Analysis. Applied Sciences, 9(22), 4939. https://doi.org/10.3390/app9224939