Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys
Abstract
:1. Introduction
2. Thermodynamic Modeling
2.1. CALPHAD Method
2.2. Electronic Structure Calculations
3. Literature Review
3.1. The Plutonium-Iron Phase Diagram
3.2. The Uranium-Iron Phase Diagram
3.3. The Iron-Gallium Phase Diagram
3.4. The Plutonium-Uranium-Iron Phase Diagram
3.5. The Plutonium-Iron-Gallium Phase Diagram
3.6. The Uranium-Iron-Gallium Phase Diagram
4. Crystal Structure
5. Results and Discussion
5.1. Pu-Fe Assessment
5.2. U-Fe Assessment
5.3. Fe-Ga Assessment
5.4. Pu-U-Fe Assessment
5.5. Extrapolation to An-Fe-Ga Systems (An = Pu, U)
5.6. Prediction of Quaternary Pu-U-Fe-Ga System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.; Kurata, M. Thermodynamic re-assessment of the Pu-U system and its application to the ternary Pu-U-Ga system. J. Nucl. Mater. 2014, 454, 81–95. [Google Scholar] [CrossRef]
- Kurata, M.; Nakamura, K.; Ogata, T. Thermodynamic evaluation of the quaternary U-Pu-Zr-Fe system-assessment of cladding temperature limits of metallic fuel in a fast reactor. J. Nucl. Mater. 2001, 294, 123–129. [Google Scholar] [CrossRef]
- Kurata, M. Thermodynamic database on U-Pu-Zr-Np-Am-Fe alloy system II- Evaluation of Np, Am and Fe containing systems. In Proceedings of the IOP Conference Series: Material Science and Engineering, San Francisco, CA, USA, 12–17 July 2009. [Google Scholar] [CrossRef]
- Chatain, S.; Guéneau, C.; Labroche, D. Thermodynamic assessment of the Fe-U binary system. J. Phase Equilib. 2003, 24, 122–131. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.J.; Wang, C.P. Thermodynamic calculation of phase equilibria of the U-Ga and U-W systems. J. Nucl. Mater. 2008, 380, 105–110. [Google Scholar] [CrossRef]
- Moussa, G.; Berche, A.; Barbosa, J.; Pasturel, M.; Stepnik, B.; Tougait, O. Experimental investigation of the phase equilibria and thermodynamic assessment in the U-Ga and U-Al-Ga systems. J. Nucl. Mater. 2018, 499, 361–371. [Google Scholar] [CrossRef]
- Turchi, P.E.A.; Kaufman, L.; Liu, Z.-K.; Zhou, S. Thermodynamics and Kinetics of Phase Transformations in Plutonium Alloys-Part 1; UCRL-TR-206658; Lawrence Livermore National Lab.: Livermore, CA, USA, 2004. [Google Scholar]
- Lukas, H.L.; Fries, S.G.; Sundman, B. Computational Thermodynamics, The Calphad Method; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Dinsdale, A.T. SGTE data for pure elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Muggianu, Y.; Gambino, M.; Bros, J. Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723 K—Choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary system. J. Chim. Phys. Phys-Chim. Biol. 1975, 72, 83–88. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1338. [Google Scholar] [CrossRef]
- Söderlind, P.; Gonis, A. Assessing a solids-biased density-gradient functional for actinide metals. Phys. Rev. B 2010, 82, 033102. [Google Scholar] [CrossRef]
- Perdew, J.P. Electronic Structures of Solids; Ziesche, P., Eschrig, H., Eds.; Springer: Berlin, Germany, 1991; pp. 11–20. [Google Scholar]
- Perdew, J.P.; Ruzsinszky, A.; Gabor, G.O.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Kieron, B. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Savrasov, S.Y.; Kotliar, G. Ground-State Theory of δ-Pu. Phys. Rev. Lett. 2000, 84, 3670–3673. [Google Scholar] [CrossRef] [PubMed]
- Söderlind, P.; Landa, A.; Sadigh, B. Density-functional theory for plutonium. Adv. Phys. 2019, 68, 1–47. [Google Scholar] [CrossRef]
- Xie, W.; Xiong, W.; Marianetti, C.A.; Morgan, D. Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches. Phys. Rev. B 2013, 88, 235128. [Google Scholar] [CrossRef]
- Söderlind, P.; Landa, A.; Turchi, P.E.A. Comment on “Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches”. Phys. Rev. B 2014, 90, 157101. [Google Scholar] [CrossRef]
- Wills, J.M.; Alouani, M.; Andersson, P.; Delin, A.; Eriksson, O.; Grechnev, O. Full Potential Electronic Structure Method; Springer: Berlin, Germany, 2010. [Google Scholar]
- Söderlind, P. Theory of the crystal structures of cerium and the light actinides. Adv. Phys. 1998, 47, 959–998. [Google Scholar] [CrossRef]
- Söderlind, P.; Grabowski, B.; Yang, L.; Landa, A.; Björkman, T.; Souvatzis, P.; Eriksson, O. High-temperature phonon stabilization of γ-uranium from relativistic first-principles theory. Phys. Rev. B 2012, 85, 060301. [Google Scholar] [CrossRef]
- Vitos, L.; Abrikosov, I.A.; Johansson, B. Anisotropic Lattice Distortions in Random Alloys from First-Principals Theory. Phys. Rev. Lett. 2001, 87, 156401. [Google Scholar] [CrossRef]
- Vitos, L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Application; Springer: London, UK, 2007. [Google Scholar]
- Kollar, J.; Vitos, L.; Skriver, H.L. Electronic Structure and Physical Properties in Solids: The Uses of the LMTO Method; Springer: Berlin, Germany, 2000; pp. 85–113. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.P.J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Turchi, P.E.A. Density-functional study of the U-Zr system. J. Alloy Compd. 2009, 478, 103–110. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Turchi, P.E.A.; Vitos, L.; Ruban, A. Density-functional study of Zr-based actinide alloys: 2. U-Pu-Zr system. J. Nucl. Mater. 2009, 393, 141–145. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Turchi, P.E.A.; Vitos, L.; Ruban, A. Density functional study of Zr-based actinide alloys. J. Nucl. Mater. 2009, 385, 68–71. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Turchi, P.E.A.; Vitos, L.; Ruban, A. Density-functional study of bcc Pu-U, Pu-Np, Pu-Am, Pu-Cm alloys. J. Nucl. Mater. 2009, 408, 61–66. [Google Scholar] [CrossRef]
- Bajaj, S.; Garay, A.; Landa, A.; Söderlind, P.; Turchi, P.E.A.; Arróyave, R. Thermodynamic study of the Np-Zr system. J. Nucl. Mater. 2011, 409, 1–8. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Turchi, P.E.A. Density-functional study of bcc U-Mo, Np-Mo, Pu-Mo, and Am-Mo alloys. J. Nucl. Mater. 2013, 434, 31–37. [Google Scholar] [CrossRef]
- Turchi, P.E.A.; Landa, A.; Söderlind, P.A. Thermodynamic assessment of the Am-Pu system with input from ab initio. J. Nucl. Mater. 2011, 418, 165–173. [Google Scholar] [CrossRef]
- Bajaj, S.; Söderlind, P.; Turchi, P.E.A.; Arróyave, R. The U-Ti system: Strengths and weaknesses of the CALPHAD method. J. Nucl. Mat. 2011, 419, 177–185. [Google Scholar] [CrossRef]
- Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F. The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study. J. Nucl. Mater. 2015, 458, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Turchi, P.E.A.; Kaufman, L.; Zhou, S.; Liu, Z.-K. Thermostatics and kinetics of transformations in Pu-based alloys. J. Alloy Compd. 2007, 444, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Perron, A.; Ravat, B.; Oudot, B.; Lalire, F.; Mouturat, K.; Delaunay, F. Phase transformations in Pu-Ga alloy: Synergy between simulations and experiments to elucidate direct and indirect reversion competition. Acta Mater. 2013, 61, 7109–7120. [Google Scholar] [CrossRef]
- Ravat, B.; Oudot, B.; Perron, A.; Lalire, F.; Delaunay, F. Phase transformations in PuGa 1 at. % alloy: Study of whole reversion process following martensitic transformation. J. Alloy Compd. 2013, 580, 298–309. [Google Scholar] [CrossRef]
- Ravat, B.; Lalire, F.; Oudot, B.; Appolaire, B.; Aeby-Gautier, E.; Panisiot, J.; Delaunay, F. Phase transformations in PuGa 1 at. % alloy: Influence of stress on δ→α’ martensitic transformation at low temperatures. Materialia 2019, 6, 100304. [Google Scholar] [CrossRef]
- Perron, A.; Turchi, P.E.A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F. Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu and U. J. Nucl. Mater. 2016, 482, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Konobeevsky, S.T. Phase Diagram of Some Plutonium Systems, Conference on the Peaceful Use of Atomic Energy, Moscow, Soviet Union. 1955.
- Avivi, E. Studies of Plutonium-Iron and Uranium-Plutonium-Iron Alloys. Doctorate Thesis/Dissertation, CEA-Fontenay-aux-Roses, Université de Paris, Paris, France, 1964. [Google Scholar]
- Mardon, P.G.; Haines, H.R.; Pearce, J.H.; Waldron, M.B. The Plutonium-Iron system. J. Inst. Met. 1957, 86, 166–171. [Google Scholar]
- Ofte, D.; Wittenberg, L.J. Viscosity-Composition Relationships in Molten Plutonium-Iron Alloys. Trans. ASM 1964, 57, 916–924. [Google Scholar]
- Chiotti, P.; Akhachinskij, V.V.; Ansara, I.; Rand, M.H. The Chemical Thermodynamics of Actinide Elements and Compounds; International Atomic Energy Agency: Vienna, Austria, 1981; pp. 114–117, 228–230. [Google Scholar]
- Campbell, G. Plutonium and Other Actinides; Blanck, H., Lindner, R., Eds.; North Holland: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Akhachinskij, V.V.; Koputin, L.M.; Ivanov, I.; Podol’skaya, N.S. Thermodynamics of Nuclear Materials. In Proceedings of the Symposium on Thermodynamics of Nuclear Materials, Vienna, Austria, 21–25 May 1962. [Google Scholar]
- Schonfeld, F.W. Plutonium Phase Diagrams Studied at Los Alamos; Coffinberry, A.S., Miner, W.N., Eds.; University of Chicago Press: Chicago, IL, USA, 1961. [Google Scholar]
- Elliott, R.O.; Larson, A.C. The Metal Plutonium; Coffinberry, A.S., Miner, W.N., Eds.; University of Chicago Press: Chicago, IL, USA, 1961; pp. 265–280. [Google Scholar]
- Schwartz, D.S.; Tobash, P.H.; Richmond, S. Thermal Analysis of Pu6Fe Synthesized from Hydride Precursor; Material Research Society: San Francisco, CA, USA, 2014. [Google Scholar]
- Moreau, G.; Calais, D. Solubility of Plutonium in Iron. J. Nucl. Mater. 1967, 24, 121–124. [Google Scholar] [CrossRef]
- Okamoto, H. Phase Diagrams of Binary Actinide Alloys; Kassner, M.E., Peterson, D.E., Eds.; ASM International: Materials Park, OH, USA, 1995; pp. 314–317. [Google Scholar]
- Gordon, P.; Kaufmann, A.R. Uranium-Aluminum and Uranium-Iron. Trans. Metall. AIME 1950, 188, 182–194. [Google Scholar]
- Grogan, J.D. The Uranium-Iron System. J. Inst. Met. 1950, 77, 571–576. [Google Scholar]
- Bellot, J.; Blanchon, A.; Chazot, R.; Dosiere, P.; Henry, J.-M.; Colas, M. Uranium-Iron Equilibrium Diagram for Dilute Iron Concentration Range. C. R. 1958, 246, 3063–3065. [Google Scholar]
- Straatman, J.A.; Neumann, N.F. Equilibrium Structures in the High Uranium-Iron Alloy System; Topical Report. No. MCW-1487 MCW-1487; Mallinckrodt Chemical Works: Welding Spring, Missouri, USA, 1964. [Google Scholar]
- Michaud, G.G. A study of the iron-rich portion of the Fe-U phase diagram. Can. Metall. Q. 1966, 5, 355–365. [Google Scholar] [CrossRef]
- Chapman, L.R.; Holcombe, C.F. Revision of the Uranium-Iron Phase Diagram. J. Nucl. Mater. 1984, 126, 323–326. [Google Scholar] [CrossRef]
- Leibowitz, L.; Blomquist, R.A. Thermodynamics and Phase Equilibria of the Iron-Uranium System. J. Nucl. Mater. 1991, 184, 47–52. [Google Scholar] [CrossRef]
- Gardie, P.; Bordier, G.; Poupeau, J.J.; Le Ny, J. Thermodynamic Activity Measurements of U-Fe and U-Ga Alloys by Mass Spectrometry. J. Nucl. Mater. 1992, 189, 85–96. [Google Scholar] [CrossRef]
- Swindells, N. The Solubility of Iron in Solid Uranium Between 0.003 wt. % and 0.3 wt. % Iron. J. Nucl. Mater. 1966, 18, 261–271. [Google Scholar] [CrossRef]
- Labroche, D. Contribution a l’etude Thermodynamique du Systeme Ternaire U-Fe-O. Ph.D. Thesis/Dissertation, Institut National Polytechnique de Grenoble, Grenoble, France, 2000. [Google Scholar]
- Dasarathy, C.; Hume Rothery, W. The system iron-gallium. Proc. R. Soc. Lond. Ser. A 1965, 286, 141–157. [Google Scholar]
- Köster, W.; Gödecke, T. Über den Aufbau des Systems Eisen-Gallium zwischen 10 und 50 At.-% Ga und dessen Abhägigkeit von der Wärmebehandlung, I. Das Diagramm der raumzentrierten Phasen. Z. Metallk. 1977, 68, 582–589. [Google Scholar]
- Köster, W.; Gödecke, T. Über den Aufbau des Systems Eisen-Gallium z zwischen 10 und 50 At.-% Ga und dessen Abhägigkeit von der Wärmebehandlung II. Das Gleichgewichtsdiagramm. Z. Metallk. 1977, 68, 661–666. [Google Scholar]
- Luo, H.L. Lattice Parameters of Iron-Rich Iron-Gallium Alloys. Trans. Metall. AIME 1967, 239, 119–120. [Google Scholar]
- Malaman, B.; Philippe, M.J.; Roques, B.; Courtois, A.; Protas, J. Structures cristallines des phases Fe6Ge5 et Fe5Ga5. Acta Crystallogr. B 1974, 30, 2081–2087. [Google Scholar] [CrossRef] [Green Version]
- Meissner, H.G.; Schubert, K. Constitution of Some Systems Homologous and Quasihomologous to T5-Ga, II. The Systems Chromium-Gallium, Manganese-Gallium, and Iron-Gallium and some Notes on the Systems Vanadium-Antimony and Vanadium-Arsenic. Z. Metallk. 1965, 56, 523–530. [Google Scholar]
- Schubert, K.; Bhan, S.; Burkhart, W.; Gohle, R.; Meissner, H.G.; Poetschke, M.; Stolz, E. Structural Data on Metallic Phases. Naturwissenschaften 1960, 47, 303. [Google Scholar] [CrossRef]
- Okamoto, H. Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Okamoto, H., Subramnian, P.F., Kacprzak, L., Eds.; ASM International: Materials Park, OH, USA, 1993. [Google Scholar]
- Ogata, T.; Nakamura, K.; Kurata, M.; Yokoo, T.; Mignanelli, M.A. Reactions between U-Pu-Zr Alloys and Fe at 923 K. J. Nucl. Sci. Technol. 2000, 37, 244–252. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogata, T.; Kurata, M.; Yokoo, T.; Mignanelli, M.A. Reactions of Uranium-Plutonium Alloys with Iron. J. Nucl. Sci. Technol. 2001, 38, 112–119. [Google Scholar] [CrossRef]
- Nakamura, K.; Kurata, M.; Ogata, T.; Yokoo, T.; Mignanelli, M.A. Phase Relations in the Fe-Pu-U Ternary System. J. Phase Equilib. 2001, 22, 259–264. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogata, T.; Kurata, M. Analysis of metal fuel/cladding metallurgical interaction during off-normal transient events with phase diagram of the U-Pu-Zr-Fe system. J. Phys. Chem. Solids 2005, 66, 643–646. [Google Scholar] [CrossRef]
- Dwight, A.E.; Mueller, M.H.; Conner, R.A.; Downey, J.W., Jr.; Knott, H. Ternary Compounds with the Fe2P type Structure. Trans. Metall. AIME 1968, 242, 2075–2080. [Google Scholar]
- Grun, Y.N.; Rogl, P.; Hiebl, K. Structural Chemistry and Magnetic Behaviour of Ternary Uranium Gallides U{Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt}Ga5. J. Less-Common Met. 1986, 121, 497–505. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Maehira, T.; Ikeda, S.; Haga, Y.; Yamamoto, E.; Nakamura, A.; Onuki, Y.; Higuchi, M.; Hasegawa, A. Magnetic and Fermi Surface Properties of UFeGa5. J. Phys. Soc. Jpn. 2001, 70, 2982–2988. [Google Scholar] [CrossRef]
- Ikeda, S.; Tokiwa, Y.; Okubo, T.; Yamada, M.; Matsuda, T.D.; Inada, Y.; Settai, R.; Yamamoto, E.; Haga, Y.; Onuki, Y. Magnetic and Fermi surface properties of UTGa5 (T:Fe, Co and Pt). Physica B 2003, 329, 610–611. [Google Scholar] [CrossRef]
- Moreno, N.O.; Bauer, E.D.; Sarrao, J.L.; Hundley, M.F.; Thompson, J.D.; Fisk, Z. Thermodynamic and transport properties of single-crystalline UMGa5 (M = Fe, Co, Ni, Ru, Rh). Phys. Rev. B 2005, 72, 035119. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.P.; Werenborgh, J.C.; Sério, S.; Paixão, J.A.; Godinho, M.; Almeida, M. Structural and magnetic properties of UFe6Ga6. Intermetallics 2006, 13, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.A.; Mora, P.; Cruz, M.M.; Noël, H.; Tougait, O.; Tran, V.H.; Gonçalves, A.P. Crystal structure and magnetic properties of UFe5Ga7. J. Nucl. Mater. 2009, 389, 160–163. [Google Scholar] [CrossRef]
- Ikeda, S.; Okubo, T.; Tokiwa, Y.; Kaneko, K.; Matsuda, T.D.; Yamamoto, E.; Haga, Y.; Onuki, Y. Magnetic properties of U2RhGa8 and U2FeGa8. J. Phys. Condens. Matter 2003, 15, S2015–S2018. [Google Scholar] [CrossRef]
- Jardin, R.; Colineau, E.; Griveau, J.-C.; Boulet, P.; Wastin, F.; Rebizant, J. A new family of heavy-fermion compounds. J. Alloys Compd. 2007, 432, 39–44. [Google Scholar] [CrossRef]
- Couderc, J.J.; Bras, J.; Fagot, F. Precipitation dans le system fer-gallium au voisinage de 25 at. % Ga. Phys. Status Solidi A 1977, 41, 595–605. [Google Scholar] [CrossRef]
- Nishino, Y.; Matsuo, M.; Asano, S.; Kawamiya, N. Stability of the D03 phase in (FeM1-xMx)3Ga (M = 3d transition metals). Scr. Metall. Mater. 1991, 25, 2291–2296. [Google Scholar] [CrossRef]
- Suzuki, T.; Oya, Y.; Ochiai, S. The Mechanical Behavior of Nonstoichiometric Compounds Ni3Si, Ni3Ge and Fe3Ga. Metall. Trans. A 1984, 15, 173–181. [Google Scholar] [CrossRef]
- Philippe, M.J.; Malaman, B.; Roques, B.; Courtois, A.; Protas, J. Structures cristallines des phases Fe3Ga4 et Cr3Ga4. Acta Crystallogr. B 1975, 31, 477–482. [Google Scholar] [CrossRef]
- Hausserman, U.; Bostrom, M.; Viklund, P.; Rapp, O.; Bjornangen, T. FeGa3 and RuGa3: Semiconducting intermetallic Compounds. J. Solid State Chem. 2002, 165, 94–99. [Google Scholar] [CrossRef]
- Lebech, B.; Wullf, M.; Lander, G.H.; Spirlet, J.C.; Delapalme, A. Neutron diffraction studies of the crystalline and magnetic properties of UFe2. J. Phys. Condens. Mater. 1989, 1, 10229–10248. [Google Scholar] [CrossRef]
- Kimball, C.W.; Vaishnava, P.P.; Jorgensen, F.Y. Phonon anomalies and local atomic displacements in the exchange-enhanced superconductor U6Fe. Phys. Rev. B 1985, 32, 4419–4425. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.I.; Podol’skaya, N.S. Heats of formation of U6Fe and UFe2 Translated from. Soviet. J. Atomic. Energy. 1962, 13, 572–575. [Google Scholar]
- Hecker, S.S.; Timofeeva, L.F. A Tale of Two Diagrams; Los Alamos Science: Los Alamos, NM, USA, 2000. [Google Scholar]
Phase | Calphad Designation | Pearson Symbol | Space Group | Strukturbericht | Prototype | Transition Temp. (°C) |
---|---|---|---|---|---|---|
α-Fe | BCC_A2 | cF4 | Imm | A2 | W | 912 |
γ-Fe | FCC_A1 | cI2 | Fmm | A1 | Cu | 1394 |
δ-Fe | BCC_A2 | cF4 | Imm | A2 | W | 1538 |
α-Ga | Orthorhombic_A11 | oC8 | Cmca | A11 | Ga | 30 |
α-Pu | Alpha_Pu | mP16 | P21/m | - | α-Pu | 124 |
β-Pu | Beta_Pu | mC34 | C2/m | - | β-Pu | 215 |
γ-Pu | Gamma_Pu | oF8 | Fddd | - | γ-Pu | 320 |
δ-Pu | FCC_A1 | cF4 | Fmm | A1 | Cu | 463 |
δ-Pu | Tetragonal_A6 | tI2 | I4/mmm | A6 | In | 483 |
ε-Pu | BCC_A2 | cI2 | Imm | A2 | W | 640 |
α-U | Orthorhombic_A20 | oC4 | Cmcm | A20 | α-U | 668 |
β-U | Tetragonal_U | tP30 | P42/mmm | Ab | β-U | 776 |
γ-U | BCC_A2 | cI2 | Imm | A2 | W | 1135 |
Compound | Composition | Pearson Symbol | Space Group | Strukturbericht | Prototype | Refs. |
---|---|---|---|---|---|---|
α’ | Fe0.75Ga0.25 | cP2 | Pmm | B2 | CsCl | [86] |
α’’ | Fe3Ga | cF16 | Fmm | - | - | [65] |
α’’’ | Fe3Ga | cF16 | Fmm | D03 | BiF3 | [87] |
α-Fe3Ga | Fe2.8Ga1.2 | cP4 | Pmm | L12 | AuCu3 | [88] |
β-Fe3Ga | Fe3Ga | hP8 | P63/mmc | D019 | Ni3Sn | [87] |
α-Fe6Ga5 | Fe6Ga5 | mC44 | C2/m | - | Al8Cl5 | [69] |
β-Fe6Ga5 | Fe6Ga5 | hR26 | Rm | - | - | |
Fe3Ga4 | Fe3Ga4 | mC42 | C2/m | - | - | [89] |
FeGa3 | FeGa3 | tP16 | Pn2 | - | CoGa3 | [90] |
α-(Pu,U)Fe2 | PuFe2/UFe2 | cF24 | Fdm | C15 | Cu2Mg | [45,91] |
β-PuFe2 | PuFe2 | hP24 | P63/mmc | C36 | MgNi2 | [7] |
γ-PuFe2 | PuFe2 | c ** | - | [7] | ||
(Pu,U)6Fe | Pu6Fe/U6Fe | tl28 | I/mcm | D2c | MnU6 | [45,92] |
Compound | Pearson Symbol | Space Group | Strukturbericht | Prototype | Refs. |
---|---|---|---|---|---|
UFeGa | hP9 | P62m | C22 | Fe2P | [77] |
UFeGa5 | tP7 | P4/mmm | - | HoCoGa5 | [78,81] |
UFe6Ga6 | tI26 | I4/mmm | D2b | ThMn12 | [82] |
UFe5Ga7 | tI26 | I4/mmm | D2b | ThMn12 | [83] |
U2FeGa8 | tP11 | P4/mmm | - | Ho2CoGa8 | [84] |
U4FeGa12 | cI34 | Imm | - | Y4PdGa12 | [85] |
Phase | Parameter | Kurata [2,3] ** | This Work |
---|---|---|---|
Liquid | 0LFe,Pu | −35,332 + 27.530 × T | −23,000 + 2.1 × T |
1LFe,Pu | −8149.0 | 380 | |
2LFe,Pu | −4933.0 | 2680 | |
0LFe,U | −46,128−0.13459 × T | −30,613.93−22.81 × T | |
1LFe,U | −11,776 | −57,241.80 + 41.34 × T | |
2LFe,U | 9258.5 | −1988.06 + 7.3308 × T | |
0LFe,Pu,U | 10,000 ** | −14,000 | |
1LFe,Pu,U | N/A | −9500 | |
2LFe,Pu,U | N/A | −10,000 | |
0LFe,Ga | N/A | −86,500 + 18 × T | |
1LFe,Ga | N/A | −15,363 + 3.5 × T | |
2LFe,Ga | N/A | −13,000 | |
BCC (ε-Pu, γ-U) | 0LFe,Pu | 13,000 | 7295 |
1LFe,Pu | 8500 | 12,150 | |
0LFe,U | 1204.5 | 53,000 | |
1LFe,U | 0 | 66,000 | |
0LFe,Ga | N/A | −104,669 + 26.3 × T | |
1LFe,Ga | N/A | 8000−19 × T | |
FCC (δ-Pu, γ-Fe) | 0LFe,Pu | 18,000 | 11,250 |
1LFe,Pu | 3000 | 7250 | |
0LFe,U | −3595.3 | 18,142.90 | |
0LFe,Ga | N/A | −107,800 + 28 × T | |
1LFe,Ga | N/A | 19,800-24 × T | |
TETRAGONAL_U (β-U) | 0LFe,U | 30,000 | −8400 |
(Pu,U)Fe2 | GFe:Pu | −61902 + 26.18 × T + GPULIQ + 2 × GFELIQ | −15850 + 0.53 × T + 0.333 × GHSERPU + 0.667 × GHSERFE |
GFe:U | −106,537 + 33.251 + GULIQ + 2 × GFELIQ | −21,061.115-0.281944 × T + 0.333 × GHSERUU + 0.667 × GHSERFE | |
0LFe:Pu,U | 0 | −5000 | |
(Pu,U)6Fe | GFe:Pu | −91,210 + 90.6 × T + 6 × GPULIQ + GLIQFE | −17,850-31.2 × T + 6 × GHSERPU + GHSERFE |
GFe:U | −149,660 + 88.270 × T + 6 × GPULIQ + GLIQFE | −49,520.86−3.709854 × T + 6 × GHSERUU + GHSERFE | |
LFe:Pu,U | 0 | 4500 | |
Fe3Ga | GFe:Ga | N/A | −25,875 + 3.7 × T + 0.75 × GHSERFE + 0.25 × GHSERGA |
Fe6Ga5 | GFe:Ga | N/A | −32,594 + 3.3 × T + 0.546 × GHSERFE + 0.454 × GHSERGA |
Fe3Ga4 | GFe:Ga | N/A | −33,545 + 3.0 × T + 0.429 × GHSERFE + 0.571 × GHSERGA |
FeGa3 | GFe:Ga | N/A | −27,275 + 0.1 × T + 0.25 × GHSERFE + 0.75 × GHSERGA |
Reaction Type | Reaction | Composition at. % Fe | Temp (°C/K) | Refs. | ||
---|---|---|---|---|---|---|
1 Congruent | α’’⟷β-Fe3Ga | 72.5 | 72.5 | 72.5 | 680/953 | [65] |
75 | 75 | 75 | 703/976 | This work | ||
2 Peritectic | L + α’⟷Fe3Ga4 | 38.2 | 52/52.5 | 43 | 906/1173 | [64,65,66] |
39.7 | 49.3 | 42.9 | 911/1178 | This work | ||
3 Peritectic | L + Fe3Ga4⟷FeGa3 | 18.5 | 42 | 25 | 824/1097 | [65,66] |
Eutectic | 28.4 | 42.9 | 25 | 825/1097 | This work | |
4 Peritectic | L + Fe3Ga4⟷α-Ga | 0.1 | 25 | - | 34/307 | [65,66] |
0.1 | 25 | - | 34/303 | This work | ||
5 Peritectoid | α’ + Fe3Ga4⟷β-Fe6Ga5 | 58 | 43.5 | 55 | 800/1073 | [65,66] |
54.7 | 42.9 | 54.6 | 800/1073 | This work | ||
6 Peritectoid | β-Fe6Ga5 + Fe3Ga4⟷α-Fe6Ga5 | 54.5 | 43.5 | 54.5 | 778/1051 | [65,66] |
- | - | - | - | This work | ||
7 Peritectoid | β-Fe3Ga4 + Fe6Ga5⟷α-Fe3Ga | 71 | 56.5 | 70.8 | 619/892 | [65,66] |
- | - | - | - | This work | ||
8 Eutectoid | β-Fe6Ga5⟷α’ + α-Fe6Ga5 | 55.5 | 59 | 55.5 | 770/1043 | [65,66] |
- | - | - | - | This work | ||
9 Eutectoid | α’⟷β-Fe3Ga + Fe6Ga5 | 66.5 | 71 | 56.5 | 625/898 | [65,66] |
67.1 | 75 | 56.5 | 605/883 | This work | ||
10 Eutectoid | β-Fe3Ga⟷α’’ + α-Fe3Ga | 74 | 75 | 73.8 | 605/878 | [65,66] |
- | - | - | - | This work | ||
11 Eutectoid | α’’’⟷α-Fe + α-Fe3Ga | 76.6 | 79.4 | 73.7 | 588/861 | [65,66] |
- | - | - | - | This work | ||
12 Congruent | L⟷PuFe2 | 66.67 | 66.67 | 66.67 | 1240/1513 | [45] |
66.67 | 66.67 | 66.67 | 1240/1513 | This work | ||
66.67 | 66.67 | 66.67 | 1258/1531 | [3] | ||
13 Peritectic | L + PuFe2⟷Pu6Fe | 11.5 | 66.67 | 14.29 | 428/701 | [45] |
11.3 | 66.67 | 14.29 | 423.5/696.5 | This work | ||
13.7 | 66.67 | 14.29 | 429.2/702.2 | [3] | ||
14 Catatectic | L + δ-Fe⟷γ-Fe | 94 | 98.8 | 100 | 1400/1673 | [44] |
92.9 | 99.6 | 100 | 1402/1675 | This work | ||
92.9 | 98.6 | 100 | 1404/1677 | [3] | ||
15 Catatectic | L + δ-Pu⟷ε-Pu | 8.5 | 1.3 | 2.4 | 430/703 | [45] |
8.7 | 0.9 | 2.7 | 429.5/702.5 | This work | ||
7.6 | 0.4 | 1.9 | 444.5/716.5 | [3] | ||
16 Eutectoid | γ-Fe⟷α-Fe + PuFe2 | 99 | 100 | 66.67 | 907/1180 | [46] |
99.7 | 100 | 66.67 | 905/1178 | This work | ||
98.9 | 100 | 66.67 | 894/1166 | [3] | ||
17 Eutectic | L⟷γ-Fe + PuFe2 | 82 | 98.8 | 66.7 | 1165/1438 | [45] |
81.2 | 98.9 | 66.7 | 1164/1437 | This work | ||
81.2 | 97 | 66.7 | 1135/1408 | [3] | ||
18 Eutectic | L⟷δ-Pu + Pu6Fe | 9.5 | 0.5 | 14.29 | 413/686 | [46] |
9.35 | 0.9 | 14.29 | 416.6/689.6 | This work | ||
8.9 | 0.4 | 14.29 | 420/693 | [3] | ||
19 Congruent | L⟷UFe2 | 66.67 | 66.67 | 66.67 | 1230/1503 | [55] |
66.67 | 66.67 | 66.67 | 1230/1503 | This work | ||
66.67 | 66.67 | 66.67 | 1236/1509 | [4] | ||
66.67 | 66.67 | 66.67 | 1227/1500 | [3] | ||
20 Peritectic | L + γ-U⟷U6Fe | 15 | 1.5 | 14.39 | 832/1102 | [64] |
15.25 | 1.32 | 14.29 | 832/1102 | This work | ||
15.06 | 1.35 | 14.29 | 834/1104 | [4] | ||
19.09 | 1.14 | 14.29 | 1075.5 | [3] | ||
21 Eutectoid | γ-U⟷β-U + U6Fe | 0.8 | 0.37 | 14.29 | 762/1035 | [60] |
0.85 | 0.37 | 14.29 | 764/1037 | This work | ||
N/A | 0.46 | 14.29 | 766/1039 | [4] | ||
0.70 | 0 | 14.29 | 763/1036 | [3] | ||
22 Eutectoid | β-U⟷α-U + U6Fe | 0.175 | 0.05 | 14.29 | 669/942 | [60] |
0.172 | 0 | 14.29 | 664.4/937.4 | This work | ||
0.16 | 0 | 14.29 | 664.8/937.8 | [4] | ||
23 Eutectic | L⟷γ-Fe + UFe2 | 83 | 0 | 66.67 | 1080/1353 | [55,56,60] |
82.7 | 0 | 66.67 | 1079/1352 | This work | ||
82.55 | 0 | 66.67 | 1078/1351 | [4] | ||
83 | 0 | 66.67 | 1080/1353 | [3] | ||
24 Eutectic | L⟷UFe2 + U6Fe | 34 | 66.67 | 14.29 | 723/996 | [60] |
33.85 | 66.67 | 14.29 | 723.4/996.4 | This work | ||
33.49 | 66.67 | 14.29 | 719.4/992.5 | [4] | ||
31.16 | 66.67 | 14.29 | 725.1/998.1 | [3] |
Method/Refs. | Pu6Fe | U6Fe | PuFe2 | UFe2 |
---|---|---|---|---|
CALPHAD (This work) | −1.2 | −5.8 | −9.8 | −15 |
Experiment [64]/CALPHAD [4] | N/A | −6.8/−7.3 | N/A | −16.3/−15.8 |
CALPHAD [3] | −4.4 | −7.8 | −5.1 | −5.2 |
Experiment [47] | N/A | −2.33 | −13.1 | −11.30 |
Experiment [93] | N/A | −2.33 ± 0.72 | N/A | −10.74 |
Experiment [49] | −1.97 ± 0.65 | N/A | −9.06 ± 0.56 | N/A |
Experiment [48] | N/A | N/A | −16.6 | N/A |
SR-EMTO (This work) | −0.50 | −6.17 | −16.25 | −16.0 |
FPLMTO (This work) | 0 | −2.5 | −11.6 | −15.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, E.E.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Oudot, B.; Belof, J.L.; Stout, S.A.; Perron, A. Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys. Appl. Sci. 2019, 9, 5040. https://doi.org/10.3390/app9235040
Moore EE, Turchi PEA, Landa A, Söderlind P, Oudot B, Belof JL, Stout SA, Perron A. Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys. Applied Sciences. 2019; 9(23):5040. https://doi.org/10.3390/app9235040
Chicago/Turabian StyleMoore, Emily E., Patrice E.A. Turchi, Alexander Landa, Per Söderlind, Benoit Oudot, Jonathan L. Belof, Stephen A. Stout, and Aurélien Perron. 2019. "Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys" Applied Sciences 9, no. 23: 5040. https://doi.org/10.3390/app9235040
APA StyleMoore, E. E., Turchi, P. E. A., Landa, A., Söderlind, P., Oudot, B., Belof, J. L., Stout, S. A., & Perron, A. (2019). Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys. Applied Sciences, 9(23), 5040. https://doi.org/10.3390/app9235040