Water Temperature and Salinity Measurement Using Frequency Comb
Abstract
:1. Introduction
2. Measurement Set-Up
2.1. Temperature Measurement Setup
2.2. Salinity Measurement Setup
3. Materials and Methods
3.1. Temperature Measurement Principle
3.2. Salinity Measurement Principle
3.3. Geometry Distance of the Water
3.4. The Initial Refractive Index
4. Results and Discussion
4.1. Measurement of Water Geometry Distance
4.2. Measurement of Water Temperature
4.3. Measurement of Salinity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Symbols and Acronyms | Meaning |
---|---|
RTD | Resistance Temperature Device |
Cw laser | Continuous wave laser |
FC | Frequency Comb |
Rb | Rubidium clock |
BS1, BS2, BS3, BS4 | Beam Splitter |
M1, M2, M3, M4, M5, M7, M8 | Mirror |
RA | Reference Arm |
MA1, MA2 | Measurement Arm |
PDP | Precision Displacement Platform |
PD1, PD2 | Photodetector |
Scope | Oscilloscope |
TS | Temperature Sensor |
SS | Salinity Sensor |
L0, L1, L2, L3, L4 | geometric distance of the optical path in Figure 1 |
D | geometric distance of water |
d | thickness of the glass tank |
Lw, Lw1, Lw2 | optical path length of AM1 |
La | optical path length of AM2 |
OPD, OPD1, OPD2 | optical path difference between AM1 and AM2 |
ng | group refractive index of glass |
nw, nw1 | group refractive index of water |
nw0 | initial water group refractive index |
na | group refractive index of air |
n | phase refractive index of water |
n (S, T, λ) | phase refractive index in Quan-Fry formula |
n0, n1, n2, n3, n4, n5, n6, n7, n8, n9 | coefficient values in Quan-Fry formula |
S | salinity in ‰ |
T | water temperature in °C |
λ | optical wavelength in nanometers |
References
- Parra, L.; Lloret, G.; Lloret, J.; Rodilla, M. Physical sensors for precision aquaculture: A Review. IEEE Sens. J. 2018, 18, 183915–183923. [Google Scholar] [CrossRef]
- Postolache, O.; Girão, P.S.; Pereira, J.M.D. Water quality monitoring and associated distributed measurement systems: An Overview. Water Qual. Monit. Assess. 2012, 2, 25–64. [Google Scholar]
- Kim, R.; Chan, H.P.; Joo, H.M. Development of a fiber-optic temperature sensor for remote measurement of the water temperature in a spent nuclear fuel pool. J. Korean Phys. Soc. 2015, 66, 1495–1498. [Google Scholar] [CrossRef]
- Liao, Y.P.; Wang, J.; Wang, S.S.; Yang, H.J.; Wang, X. Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator. J. Lightwave Technol. 2016, 34, 5378–5384. [Google Scholar] [CrossRef]
- Gille, S.T. Warming of the Southern Ocean since the 1950s. Science 2002, 295, 1275–1277. [Google Scholar] [CrossRef]
- Childs, P.R.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.S.; Shin, Y.H.; Yoon, Y.S. A study on the fabrication of an RTD (resistance temperature detector) by using Pt thin film. Korean J. Chem. Eng. 2001, 18, 61–66. [Google Scholar] [CrossRef]
- Sen, S.K.; Pan, T.K.; Ghosal, P. An improved lead wire compensation technique for conventional four wire resistance temperature detectors (rtds). Measurement 2011, 44, 842–846. [Google Scholar] [CrossRef]
- Carminati, M.; Luzzatto-Fegiz, P. Conduino: Affordable and high-resolution multichannel water conductivity sensor using micro USB connectors. Sens. Actuators B-Chem. 2017, 251, 251–1041. [Google Scholar] [CrossRef]
- Ramos, P.M.; Pereira, J.D.; Ramos, H.M.G.; Ribeiro, A.L. A four-terminal water-quality-monitoring conductivity sensor. IEEE Trans. Instrum. Meas. 2008, 57, 577–583. [Google Scholar] [CrossRef]
- Noh, H.W.; Lee, J.Y.; Lee, C.J.; Jung, J.D.; Kang, J.W.; Choi, M.H.; Baek, M.C.; Shim, J.H.; Park, H.S. Precise evaluation of liquid conductivity using a multi-channel microfluidic chip and direct-current resistance measurements. Sens. Actuators B-Chem. 2019, 297, 126810. [Google Scholar] [CrossRef]
- Tanaka, M.; Girard, G.; Davis, R.; Peuto, A.; Bignell, N. Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports. Metrologia 2001, 38, 301–309. [Google Scholar] [CrossRef]
- Zhou, J.C.; Wu, N.; Wang, X.W.; Liu, Y.Q.; Ma, T.; Coxe, D.; Cao, C. Water temperature measurement using a novel fiber optic ultrasound transducer system. In Proceedings of the IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2316–2319. [Google Scholar]
- Woolfe, K.F.; Lani, S.; Sabra, K.G.; Kuperman, W.A. Monitoring deep-ocean temperatures using acoustic ambient noise. Geophys. Res. Lett. 2015, 42, 2878–2884. [Google Scholar] [CrossRef]
- Xue, B.; Wang, Z.Y.; Kai, Z.; Zhang, H.Y.; Chen, Y.; Jia, L.C. Direct measurement of the sound velocity in seawater based on the pulsed acousto-optic effect between the frequency comb and the ultrasonic pulse. Opt. Express 2018, 26, 21849–21860. [Google Scholar] [CrossRef]
- Wang, S.K.; Hanson, R.K. Quantitative 2-D OH thermometry using spectrally resolved planar laser-induced fluorescence. Opt. Lett. 2019, 44, 578–581. [Google Scholar] [CrossRef]
- Robinson, G.A.; Lucht, R.P.; Laurendeau, N.M. Two-color planar laser-induced fluorescence thermometry in aqueous solutions. Appl. Opt. 2008, 47, 2852–2858. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, Y.; Wu, Q.L.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B-Chem. 2017, 260, 86–105. [Google Scholar] [CrossRef]
- Wu, Y.; Rao, Y.J.; Chen, Y.H.; Gong, Y. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Opt. Express 2009, 17, 18142–18147. [Google Scholar] [CrossRef]
- Yang, H.J.; Wang, S.S.; Wang, X.; Liao, Y.P.; Wang, J. Temperature sensing in seawater based on microfiber knot resonator. Sensors 2014, 14, 18515–18525. [Google Scholar] [CrossRef]
- Liao, Y.P.; Wang, J.; Yang, H.J.; Wang, X.; Wang, S.S. Salinity sensing based on microfiber knot resonator. Sens. Actuators A Phys. 2015, 233, 22–25. [Google Scholar] [CrossRef]
- Muhammad, M.Z.; Jasim, A.A.; Ahmad, H.; Arof, H.; Harun, S.W. Non-adiabatic silica microfiber for strain and temperature sensors. Sens. Actuators A Phys. 2013, 192, 130–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.Y.; Zhao, T.T.; Yuan, B.; Zhang, S. Optical salinity sensor system based on fiber-optic array. IEEE Sens. J. 2009, 9, 1148–1153. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, Y.B. Novel optical fiber sensor for simultaneous measurement of temperature and salinity. Sens. Actuators B-Chem. 2002, 86, 63–67. [Google Scholar] [CrossRef]
- Chen, J.Y.; Guo, W.P.; Xia, M.; Li, W.; Yang, K.C. In situ measurement of seawater salinity with an optical refractometer based on total internal reflection method. Opt. Express 2018, 26, 25510–25523. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Worek, W.M. Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions. Appl. Opt. 1993, 32, 3992–4002. [Google Scholar] [CrossRef]
- Dobbins, H.M.; Peck, E.R. Change of refractive index of water as a function of temperature. J. Opt. Soc. Am. 1973, 63, 318–320. [Google Scholar] [CrossRef]
- Carroll, L.; Henry, M. Auto-compensating interferometer for measuring the changes in refractive index of supercooled water as a function of temperature at 632.8 nm. Appl. Opt. 2002, 41, 1330–1336. [Google Scholar] [CrossRef]
- Zhang, F.M.; Wu, H.Z.; Li, J.S.; Liu, T.Y.; Qu, X.H. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry. Opt. Express 2016, 24, 24361–24376. [Google Scholar]
- Wu, H.Z.; Zhang, F.M.; Liu, T.Y.; Qu, X.H. Glass thickness and index measurement using optical sampling by cavity tuning. Appl. Opt. 2016, 55, 9756–9763. [Google Scholar] [CrossRef]
- Zhai, X.Y.; Meng, Z.P.; Zhang, H.Y.; Xu, X.Y.; Qian, Z.W.; Xue, B.; Wu, H.Z. Underwater distance measurement using frequency comb laser. Opt. Express 2019, 27, 6757–6769. [Google Scholar] [CrossRef]
- Quan, X.H.; Fry, E.S. Empirical equation for the index of refraction of seawater. Appl. Opt. 1995, 34, 3477–3480. [Google Scholar] [CrossRef] [PubMed]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.H.; Gallagher, J.S.; Sengers, J.L. Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 1998, 27, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Millard, R.C.; Seaver, G. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength. Deep Sea Research Part A. Deep-Sea Res. Part I 1990, 37, 1909–1926. [Google Scholar] [CrossRef]
- McNeil, G.T. Metrical fundamentals of underwater lens system. Opt. Eng. 1977, 16, 162128. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xu, X.; Zhao, H.; Dong, F.; Qian, Z.; Xue, B. Water Temperature and Salinity Measurement Using Frequency Comb. Appl. Sci. 2019, 9, 5043. https://doi.org/10.3390/app9235043
Zhang H, Xu X, Zhao H, Dong F, Qian Z, Xue B. Water Temperature and Salinity Measurement Using Frequency Comb. Applied Sciences. 2019; 9(23):5043. https://doi.org/10.3390/app9235043
Chicago/Turabian StyleZhang, Haoyun, Xinyang Xu, Haihan Zhao, Fanpeng Dong, Zhiwen Qian, and Bin Xue. 2019. "Water Temperature and Salinity Measurement Using Frequency Comb" Applied Sciences 9, no. 23: 5043. https://doi.org/10.3390/app9235043
APA StyleZhang, H., Xu, X., Zhao, H., Dong, F., Qian, Z., & Xue, B. (2019). Water Temperature and Salinity Measurement Using Frequency Comb. Applied Sciences, 9(23), 5043. https://doi.org/10.3390/app9235043