Heart Attack Detection in Colour Images Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Creation of the Image Data Set
- Each image was scaled to a maximum size of pixels, maintaining the original proportion, both for “Infarct” and “No Infarct” images. This was done in order to reduce the amount of data to be processed during the augmented data technique.
- After that, the images were classified into two categories, “Infarct” and “No Infarct”. Furthermore, each category was split into the three subcategories of training, validation, and testing, as shown in Table 1. This process was done manually in order to ensure that the images from each subcategory would not be repeated. This means that an image that is being used for training, for instance, will not be used again for validation or testing purposes, thus avoiding an alteration of the final results.
- As the CNNs only have to infer a possible heart attack, people were extracted from the background of the image by reducing the noise caused by the variation of the background in order to improve the training set (see Figure 2).
- -
- People were automatically located in each image. For this purpose, the Mask R-CNN software for object detection and instance segmentation was used [36].
- -
- From the previous result, the background of the image was removed, replacing the value of each pixel with purple colour.
- Finally, the augmented data technique was applied [37]. Data augmentation is a process for generating new samples by transforming training data with the target of improving the accuracy and robustness of the classifiers. In this case, each original picture generated 20 more different images. For this, six transformations were combined and applied to each image (rotation, increase/decrease in width or height, zoom, horizontal flip, and brightness change).
3.2. Design of Convolutional Neural Networks
3.3. Training, Validation and Test
4. Results
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | convolutional neural network |
FN | false negative |
FP | false positive |
TN | true negative |
TP | true positive |
WHO | World Health Organisation |
References
- World Health Organization. The Top 10 Causes of Death; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- The World Bank. Population Ages 65 and above (% of Total); The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Yahaya, S.W.; Lotfi, A.; Mahmud, M. A Consensus Novelty Detection Ensemble Approach for Anomaly Detection in Activities of Daily Living. Appl. Soft Comput. 2019, 83, 105613. [Google Scholar] [CrossRef]
- Dhiman, C.; Vishwakarma, D.K. A review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 2019, 77, 21–45. [Google Scholar] [CrossRef]
- Patel, A.; Fang, J.; Gillespie, C.; Odom, E.; Luncheon, C.; Ayala, C. Awareness of heart attack signs and symptoms and calling 9-1-1 among U.S. adults. J. Am. Coll. Cardiol. 2018, 71, 808–809. [Google Scholar] [CrossRef]
- Goff, D.C.; Sellers, D.E.; McGovern, P.G.; Meischke, H.; Goldberg, R.J.; Bittner, V.; Hedges, J.R.; Allender, P.S.; Nichaman, M.Z.; for the REACT Study Group. Knowledge of Heart Attack Symptoms in a Population Survey in the United States: The REACT Trial. JAMA Intern. Med. 1998, 158, 2329–2338. [Google Scholar] [CrossRef]
- Mshali, H.; Lemlouma, T.; Moloney, M.; Magoni, D. A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 2018, 66, 26–56. [Google Scholar] [CrossRef]
- Fernández-Caballero, A.; Martínez-Rodrigo, A.; Pastor, J.M.; Castillo, J.C.; Lozano-Monasor, E.; López, M.T.; Zangróniz, R.; Latorre, J.M.; Fernández-Sotos, A. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 2016, 64, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yusuf, B.; Botzheim, J.; Kubota, N.; Chan, C.S. A novel multimodal communication framework using robot partner for aging population. Expert Syst. Appl. 2015, 42, 4540–4555. [Google Scholar] [CrossRef]
- Wilson, G.; Pereyda, C.; Raghunath, N.; de la Cruz, G.; Goel, S.; Nesaei, S.; Minor, B.; Schmitter-Edgecombe, M.; Taylor, M.E.; Cook, D.J. Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 2019, 54, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Haider, D.; Yang, X.; Abbasi, Q.H. Post-surgical fall detection by exploiting the 5 G C-Band technology for eHealth paradigm. Appl. Soft Comput. 2019, 81, 105537. [Google Scholar] [CrossRef]
- Pilco, H.; Sanchez-Gordon, S.; Calle-Jimenez, T.; Pérez-Medina, J.L.; Rybarczyk, Y.; Jadán-Guerrero, J.; Maldonado, C.G.; Nunes, I.L. An Agile Approach to Improve the Usability of a Physical Telerehabilitation Platform. Appl. Sci. 2019, 9, 480. [Google Scholar] [CrossRef]
- Sahoo, S.P.; Ari, S. On an algorithm for human action recognition. Expert Syst. Appl. 2019, 115, 524–534. [Google Scholar] [CrossRef]
- Khemchandani, R.; Sharma, S. Robust least squares twin support vector machine for human activity recognition. Appl. Soft Comput. 2016, 47, 33–46. [Google Scholar] [CrossRef]
- Alazrai, R.; Momani, M.; Daoud, M.I. Fall Detection for Elderly from Partially Observed Depth-Map Video Sequences Based on View-Invariant Human Activity Representation. Appl. Sci. 2017, 7, 316. [Google Scholar] [CrossRef]
- Sokolova, M.V.; Serrano-Cuerda, J.; Castillo, J.C.; Fernández-Caballero, A. A fuzzy model for human fall detection in infrared video. J. Intell. Fuzzy Syst. 2013, 24, 215–228. [Google Scholar] [CrossRef]
- Cho, C.W.; Chao, W.H.; Lin, S.H.; Chen, Y.Y. A vision-based analysis system for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl. 2009, 36, 7033–7039. [Google Scholar] [CrossRef]
- Lin, C.J.; Lin, C.H.; Wang, S.H.; Wu, C.H. Multiple Convolutional Neural Networks Fusion Using Improved Fuzzy Integral for Facial Emotion Recognition. Appl. Sci. 2019, 9, 2593. [Google Scholar] [CrossRef]
- Meza-Kubo, V.; Morán, A.L.; Carrillo, I.; Galindo, G.; García-Canseco, E. Assessing the user experience of older adults using a neural network trained to recognize emotions from brain signals. J. Biomed. Inform. 2016, 62, 202–209. [Google Scholar] [CrossRef]
- Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A Dataset for Human Activity Recognition Using Acceleration Data from Smartphones. Appl. Sci. 2017, 7, 1101. [Google Scholar] [CrossRef]
- Guan, Y.; Ploetz, T. Ensembles of deep LSTM learners for activity recognition using wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 11:1–11:28. [Google Scholar] [CrossRef]
- Hur, T.; Bang, J.; Huynh-The, T.; Lee, J.; Kim, J.I.; Lee, S. Iss2Image: A novel signal-encoding technique for CNN-based human activity recognition. Sensors 2018, 18, 3910. [Google Scholar] [CrossRef]
- Stone, E.E.; Skubic, M. Fall detection in homes of older adults using the microsoft kinect. IEEE J. Biomed. Health Inform. 2015, 19, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Bouchachia, H.; Nait-Charif, H. Activity recognition for indoor fall detection using convolutional neural network. In Proceedings of the 15th IAPR International Conference on Machine Vision Applications, Nagoya, Japan, 8–12 May 2017; pp. 81–84. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hsueh, Y.L.; Lie, W.N. Abnormal event detection using Microsoft kinect in a smart home. In Proceedings of the 2016 International Computer Symposium, Chiayi, Taiwan, 15–17 December 2016; pp. 285–289. [Google Scholar] [CrossRef]
- Fan, Y.; Levine, M.D.; Wen, G.; Qiu, S. A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing 2017, 260, 43–58. [Google Scholar] [CrossRef]
- Lie, W.N.; Le, A.T.; Lin, G.H. Human fall-down event detection based on 2D skeletons and deep learning approach. In Proceedings of the International Workshop on Advanced Image Technology, Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, S.; Lei, J.; Chen, S. Attend It Again: Recurrent Attention Convolutional Neural Network for Action Recognition. Appl. Sci. 2018, 8, 383. [Google Scholar] [CrossRef]
- Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2016; Volume 9912, pp. 483–499. [Google Scholar] [CrossRef]
- Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D human pose estimation: New benchmark and state of the art analysis. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3686–3693. [Google Scholar] [CrossRef]
- Fernández-Caballero, A.; Sokolova, M.V.; Serrano-Cuerda, J.; Castillo, J.C.; Moreno, V.; Castiñeira, R.; Redondo, L. HOLDS: Efficient Fall Detection through Accelerometers and Computer Vision. In Proceedings of the 2012 Eighth International Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012; pp. 367–370. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, M.; Zhao, J.; Wang, Q.; Shen, Y. 3D Behavior Recognition Based on Multi-Modal Deep Space-Time Learning. Appl. Sci. 2019, 9, 716. [Google Scholar] [CrossRef]
- Rojas-Albarracín, G.; Carbajal, C.A.; Fernández-Caballero, A.; López, M.T. Skeleton simplification by key points identification. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2010; Volume 6256, pp. 30–39. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.; Ponce, C.; Selman, B.; Saxena, A. Unstructured human activity detection from RGBD images. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 842–849. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.C.; Carneiro, D.; Serrano-Cuerda, J.; Novais, P.; Fernández-Caballero, A.; Neves, J. A multi-modal approach for activity classification and fall detection. Int. J. Syst. Sci. 2014, 45, 810–824. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Fawzi, A.; Samulowitz, H.; Turaga, D.; Frossard, P. Adaptive data augmentation for image classification. In Proceedings of the International Conference on Image Processing, Phoenix, AR, USA, 25–28 September 2016; pp. 3688–3692. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M. Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 2016, 23, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Esfe, M.H.; Saedodin, S.; Sina, N.; Afrand, M.; Rostami, S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int. Commun. Heat Mass Transf. 2015, 68, 50–57. [Google Scholar] [CrossRef]
- Turabieh, H.; Mafarja, M.; Li, X. Iterated feature selection algorithms with layered recurrent neural network for software fault prediction. Expert Syst. Appl. 2019, 122, 27–42. [Google Scholar] [CrossRef]
- Google Inc. TensorFlow; Google Inc.: Mountain View, CA, USA, 2019. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Class | Training | Validation | Test | Total |
---|---|---|---|---|
70% | 15% | 15% | ||
Infarct | 532 | 114 | 114 | 760 |
No Infarct | 532 | 114 | 114 | 760 |
Total | 1064 | 228 | 228 | 1520 |
Class | Initial | Training | Initial | Validation | Initial | Testing | Final |
---|---|---|---|---|---|---|---|
Training | Augmented | Validation | Augmented | Testing | Augmented | ||
Infarct | 532 | 10,640 | 114 | 2280 | 114 | 2280 | 15,960 |
No Infarct | 532 | 10,640 | 114 | 2280 | 114 | 2280 | 15,960 |
Total | 1064 | 21,280 | 228 | 4,560 | 228 | 4560 | 31,920 |
Distribution | Training | Validation | Test |
---|---|---|---|
A | 80% | 15% | 5% |
B | 70% | 15% | 15% |
C | 70% | 0% | 30% |
D | 80% | 0% | 20% |
Work | Model | Activity Identified | Accuracy | Data Source | Data Set |
---|---|---|---|---|---|
[24] | CNN | Fall | 74% | RGB-D input, background subtraction | Own, captured with Kinect |
[34] | Hierarchical maximum entropy Markov model | talking on the phone, drinking water, talking, relaxing, writing | 84.7% | RGB-D input, Skeleton | Own, captured with Kinect |
[27] | CNN and RNN/LSTM | Fall | 88.9% | RGB input | Not reported |
[25] | CNN and RNN/LSTM | Fall | 60.76% | RGB-D input, background subtraction | Own, captured with Kinect |
[26] | CNN | Fall | 65.0% | RGB input | YouTube Fall data (YTFD) set |
Ours | CNN | Infarct | 91.7% | RGB input, background subtraction | Own, Internet images |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Albarracín, G.; Chaves, M.Á.; Fernández-Caballero, A.; López, M.T. Heart Attack Detection in Colour Images Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 5065. https://doi.org/10.3390/app9235065
Rojas-Albarracín G, Chaves MÁ, Fernández-Caballero A, López MT. Heart Attack Detection in Colour Images Using Convolutional Neural Networks. Applied Sciences. 2019; 9(23):5065. https://doi.org/10.3390/app9235065
Chicago/Turabian StyleRojas-Albarracín, Gabriel, Miguel Ángel Chaves, Antonio Fernández-Caballero, and María T. López. 2019. "Heart Attack Detection in Colour Images Using Convolutional Neural Networks" Applied Sciences 9, no. 23: 5065. https://doi.org/10.3390/app9235065
APA StyleRojas-Albarracín, G., Chaves, M. Á., Fernández-Caballero, A., & López, M. T. (2019). Heart Attack Detection in Colour Images Using Convolutional Neural Networks. Applied Sciences, 9(23), 5065. https://doi.org/10.3390/app9235065