Calorimetry Technique for Observing the Evolution of Dispersed Droplets of Concentrated Water-in-Oil (W/O) Emulsion during Preparation, Storage and Destabilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparations
2.2.2. Characterization
3. Results and Discussions
3.1. DSC Thermogram Interpretation
3.2. Droplets Size Evolution
3.2.1. Droplets Formation during Preparation
Droplets Disruption
Droplets Coalescence
3.2.2. Droplets Shelf-Life during Storage
3.2.3. Droplets Deformation during Destabilization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kulkarni, V.S. Handbook of Non-Invasive Drug Delivery Systems: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2009; p. 59. [Google Scholar]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Goodarzi, F.; Zendehboudi, S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef] [Green Version]
- Danièle, D.; Daniel-David, D.; Gomez, F.; Komunjer, L.; Pezron, I.; Dalmazzone, C.; Noïk, C. Emulsion Stability and Interfacial Properties-Application to Complex Emulsions of Industrial Interest. Colloid Stab. Appl. Pharm. 2007, 3, 119–149. [Google Scholar]
- Walstra, P. Studying food colloids: Past, present and future. Spec. Publ. R. Soc. Chem. 2003, 284, 391–400. [Google Scholar]
- Basheva, E.S.; Gurkov, T.D.; Ivanov, I.B.; Bantchev, G.B.; Campbell, B.; Borwankar, R.P. Size dependence of the stability of emulsion drops pressed against a large interface. Langmuir 1999, 15, 6764–6769. [Google Scholar] [CrossRef]
- Lissant, K.J. The geometry of high-internal-phase-ratio emulsions. J. Colloid Interface Sci. 1966, 22, 462–468. [Google Scholar] [CrossRef]
- Princen, H.M. Highly concentrated emulsions. I. Cylindrical systems. J. Colloid Interface Sci. 1979, 71, 55–66. [Google Scholar] [CrossRef]
- Campos, E.V.R.; De Oliveira, J.L.; Fraceto, J.L.; Singh, J.L. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Zafimahova-Ratisbonne, A.; Wardhono, E.Y.; Lanoisellé, J.-L.; Saleh, K.; Clausse, D. Stability of W/O emulsions encapsulating polysaccharides. J. Dispers. Sci. Technol. 2014, 35, 38–47. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Zafimahova-Ratisbonne, A.; Lanoiselle, J.-L.; Saleh, K.; Clausse, D. Optimization of the formulation of water in oil emulsions entrapping polysaccharide by increasing the amount of water and the stability. Can. J. Chem. Eng. 2014, 92, 1189–1196. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Zafimahova-Ratisbonne, A.; Saleh, K.; Clausse, D.; Lanoiselle, J.-L. W/O Emulsion Destabilization and Release of a Polysaccharide Entrapped in the Droplets. J. Dispers. Sci. Technol. 2016, 37, 1581–1589. [Google Scholar] [CrossRef]
- Dalmazzone, C.; Noïk, C.; Clausse, D. Application of DSC for emulsified system characterization. Oil Gas Sci. Technol. Rev. IFP 2009, 64, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Clausse, D.; Gomez, F.; Pezron, I.; Komunjer, L.; Dalmazzone, C. Morphology characterization of emulsions by differential scanning calorimetry. Adv. Colloid Interface Sci. 2005, 117, 59–74. [Google Scholar] [CrossRef]
- Dobrat, W.; Martijn, A. CIPAC, Handbook Volume G: Analysis of Technical and Formulated Pesticides; Collaborative International Pesticides Analytical Council: Poole, UK, 1995; p. 388. [Google Scholar]
- Höhne, G.W.H.; Hemminger, W.; Flammersheim, H.-J. Theoretical Fundamentals of Differential Scanning Calorimeters. In Differential Scanning Calorimetry; Springer: Berlin/Heidelberg, Germany, 1996; pp. 21–40. [Google Scholar]
- Privalov, P.L.; Potekhin, S.A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1985, 131, 4–51. [Google Scholar]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. JBT 2010, 21, 167. [Google Scholar]
- Wardhono, E.Y.; Wahyudi, H.; Agustina, S.; Oudet, F.; Pinem, M.P.; Clausse, D.; Saleh, K.; Guenin, E. Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals. Nanomaterials 2018, 8, 859. [Google Scholar] [CrossRef] [Green Version]
- Wardhono, E.Y.; Kanani, N.; Alfirano, A. A simple process of isolation microcrystalline cellulose using ultrasonic irradiation. J. Dispers. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Kanani, N.; Alfirano, A.; Rahmayetti, R. Development of polylactic acid (PLA) bio-composite films reinforced with bacterial cellulose nanocrystals (BCNC) without any surface modification. J. Dispers. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Pinem, M.P.; Kustiningsih, I.; Agustina, S.; Oudet, F.; Lefebvre, C.; Clausse, D.; Saleh, K.; Guenin, E. Cellulose Nanocrystals to Improve Stability and Functional Properties of Emulsified Film Based on Chitosan Nanoparticles and Beeswax. Nanomaterials 2019, 9, 1707. [Google Scholar] [CrossRef] [Green Version]
- Clausse, D.; Wardhono, E.Y.; Lanoiselle, J.-L. Formation and determination of the amount of ice formed in water dispersed in various materials. Colloids Surf. Physicochem. Eng. Asp. 2014, 460, 519–526. [Google Scholar] [CrossRef]
- Porter, R.S.; Johnson, J.F. Analytical Calorimetry; Springer: Berlin/Heidelberg, Germany, 1977; Volume 1, p. 345. [Google Scholar]
- Clausse, D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J. Therm. Anal. Calorim. 2010, 101, 1071–1077. [Google Scholar] [CrossRef]
- Jones, T.J.; Neustadter, E.L.; Whittingham, K.P. Water-in-crude oil emulsion stability and emulsion destabilization by chemical demulsifiers. J. Can. Pet. Technol. 1978, 17, 2. [Google Scholar] [CrossRef]
Temperature | Duration of Stability Trial |
---|---|
54 °C | 14 days |
45 °C | 6 weeks |
35 °C | 84 days |
Sample | Size | T* (°C) | Tm (°C) | |
---|---|---|---|---|
Mass | Diameter, Ø | |||
Sample aqueous solution | 30 mg | 1 mm | −14 | 0 |
Sample w/o emulsion | 30 mg | |||
- dispersed droplet | 4 μm | −39 | 0 | |
- oil phase | - | −50 | −33 |
Droplets Disruption (rpm) | Droplets Coalescence (min) | |||||||
---|---|---|---|---|---|---|---|---|
3000 | 6000 | 10,000 | 14,000 | 0 | 5 | 10 | 15 | |
T* (°C) | - | −15.4 | −15.8 | −21.3 | −21.3 | −23.4 | −33.3 | −35.6 |
D43 (μm) | - | 488 | 451 | 153 | 153 | 102 | 15 | 10 |
Storage, 54 °C | ||||
---|---|---|---|---|
0 Day | 5th Day | 10th Day | 14th Day | |
T* (°C) | −35.5 | −35.5 | −34.8 | −33.8 |
D43 (μm) | 10 | 10 | 11 | 14 |
Chemical Agent (% w/w) | |||||
---|---|---|---|---|---|
0 | 2.5 | 5 | 7.5 | 10 | |
T* (°C) | −35.5 | −30 | −21 | −17 | −13 |
D43 (μm) | 10 | 28 | 163 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardhono, E.Y.; Pinem, M.P.; Wahyudi, H.; Agustina, S. Calorimetry Technique for Observing the Evolution of Dispersed Droplets of Concentrated Water-in-Oil (W/O) Emulsion during Preparation, Storage and Destabilization. Appl. Sci. 2019, 9, 5271. https://doi.org/10.3390/app9245271
Wardhono EY, Pinem MP, Wahyudi H, Agustina S. Calorimetry Technique for Observing the Evolution of Dispersed Droplets of Concentrated Water-in-Oil (W/O) Emulsion during Preparation, Storage and Destabilization. Applied Sciences. 2019; 9(24):5271. https://doi.org/10.3390/app9245271
Chicago/Turabian StyleWardhono, Endarto Yudo, Mekro Permana Pinem, Hadi Wahyudi, and Sri Agustina. 2019. "Calorimetry Technique for Observing the Evolution of Dispersed Droplets of Concentrated Water-in-Oil (W/O) Emulsion during Preparation, Storage and Destabilization" Applied Sciences 9, no. 24: 5271. https://doi.org/10.3390/app9245271
APA StyleWardhono, E. Y., Pinem, M. P., Wahyudi, H., & Agustina, S. (2019). Calorimetry Technique for Observing the Evolution of Dispersed Droplets of Concentrated Water-in-Oil (W/O) Emulsion during Preparation, Storage and Destabilization. Applied Sciences, 9(24), 5271. https://doi.org/10.3390/app9245271