A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware
Abstract
:1. Introduction
2. Parallel Operation of the Power Converter
2.1. Parallel Operation System
2.2. Voltage Drop Method
2.3. Average Current Method
2.4. Method by Serial Communication
3. Proposed Communication Hardware
Proposed Communication Hardware Configuration
4. Simulation and Experiment Results
4.1. Proposed Three-Level Communication Simulation
4.2. Parallel Operation Using Three-Level Communication Simulation
4.3. Experiment Result
5. Conclusions
- The communication transmitter generates two levels of signals for data transmission. However, due to the characteristics of the proposed communication hardware, three-level electrical signals are generated in the communication line according to the transmission data state of each module. The communication speed is improved by implementing full-duplex communication through the generated three-level electrical signal.
- When performing parallel operation using the proposed communication hardware, power quality can be improved under the same conditions by controlling more than twice as fast as a serial communication method, such as a conventional Modbus communication. In addition, it is expected that the data protocol can be more simplified than the full-duplex communication by time division by implementing the full-duplex communication method by the hardware proposed in this paper.
- It is expected that long-distance communication is possible by increasing the voltage of the transmission line by constructing the transmission circuit with a half-bridge structure.
- The voltage of the communication line is generated by the transmitter transmission data and the receiver transmission data signal. Therefore, it is expected to be excellent in terms of security since only two devices communicating with each other can analyze signal information of a communication line.
Author Contributions
Funding
Conflicts of Interest
References
- Brook, B.W.; Alonso, A.; Meneley, D.A.; Misak, J.; Blees, T.; van Erp, J.B. Why nuclear energy is sustainable and has to be part of the energy mix. Sustain. Mater. Technol. 2014, 1, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Karim, M.E.; Muhammad-Sukki, F.; Abu-Bakar, S.H.; Bani, N.A.; Munir, A.B.; Kabir, A.I.; Ardila-Rey, J.A.; Mas′ud, A.A. Nuclear energy development in Bangladesh: A study of opportunities and challenges. Energies 2018, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; de Vicuna, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Guo, X.Q.; Liu, W.; Lu, Z. Flexible power regulation and current-limited control of grid-connected inverter under unbalanced grid voltage faults. IEEE Trans. Ind. Electron. 2017, 64, 7425–7432. [Google Scholar] [CrossRef]
- Xia, Y.; Peng, Y.; Yang, P.; Yu, M.; Wei, W. Distributed Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2017, 32, 4949–4959. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, W.; Yu, M.; Wang, X.; Peng, Y. Power Management for a Hybrid AC/DC Microgrid with Multiple Subgrids. IEEE Trans. Power Electron. 2018, 33, 3520–3533. [Google Scholar] [CrossRef]
- Leng, D.; Polmai, S. Virtual Synchronous Generator Based on Hybrid Energy Storage System for PV Power Fluctuation Mitigation. Appl. Sci. 2019, 9, 5099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhu, Y.; Yan, C.; Bi, J.; Xiong, H.; Yuan, S. A realization method of protocol conversion between Modbus and IEC 61850. Open J. Appl. Sci. 2013, 3, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Krikidis, I.; Rong, B.; Thompson, J.S.; Wang, C.; Yang, S. On combating the half-duplex constraint in modern cooperative networks: Protocols and techniques. IEEE Wirel. Commun. 2012, 19, 20–27. [Google Scholar] [CrossRef]
- Sabharwal, A.; Schniter, P.; Guo, D.; Bliss, D.W.; Rangarajan, S.; Wichman, R. In-band full-duplex wireless: Challenges and opportunities. IEEE J. Sel. Areas Commun. 2014, 32, 1637–1652. [Google Scholar] [CrossRef] [Green Version]
- Bharadia, D.; McMilin, E.; Katti, S. Full duplex radios. In Proceedings of the ACM SIGCOMM’13, Hong Kong, China, 12–16 August 2013; pp. 375–386. [Google Scholar]
- Galloway, B.; Hancke, G.P. Introduction to Industrial Control Networks. IEEE Commun. Surv. Tutor. 2013, 15, 860–880. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Wang, P.; Xiao, J.; Tang, Y. Implementation of hierarchical control in DC microgrids. IEEE Trans. Ind. Electron. 2014, 61, 4032–4042. [Google Scholar] [CrossRef]
- Chen, B.; Chen, C.; Wang, J.; Butler-Purry, K.L. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids. IEEE Trans. Power Syst. 2017, 33, 1507–1520. [Google Scholar] [CrossRef]
- Charalambous, A.; Hadjidemetriou, L.; Zacharia, L.; Bintoudi, A.D.; Tsolakis, A.C.; Tzovaras, D.; Kyriakides, E. Phase Balancing and Reactive Power Support Services for Microgrids. Appl. Sci. 2019, 9, 5067. [Google Scholar] [CrossRef] [Green Version]
- Augustine, S.; Mishra, M.K.; Lakshminarasamma, N. Adaptive Droop Control Strategy for Load Sharing and Circulating Current Minimization in Low-Voltage Standalone DC Microgrid. IEEE Trans. Sustain. Energy 2015, 6, 132–141. [Google Scholar] [CrossRef]
- Tayab, U.B.; Roslan, M.A.B.; Hwai, L.J.; Kashif, M. A review of droop control techniques for microgrid. Renew. Sustain. Energy Rev. 2017, 76, 717–727. [Google Scholar] [CrossRef]
- Shuai, Z.; Mo, S.; Wang, J.; Shen, Z.J.; Tian, W.; Feng, Y. Droop control method for load share and voltage regulation in high-voltage microgrids. J. Mod. Power Syst. Clean Energy 2016, 4, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Shankar, R.; Pradhan, S.; Chatterjee, K.; Mandal, R. A comprehensive state of the art literature survey on LFC mechanism for power system. Renew. Sustain. Energy Rev. 2017, 76, 1185–1207. [Google Scholar] [CrossRef]
- Zhong, Q.-C. Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel. IEEE Trans. Ind. Electron. 2013, 60, 1281–1290. [Google Scholar] [CrossRef]
- Li, Y.W.; Kao, C.N. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. Power Electron. 2009, 12, 2977–2988. [Google Scholar]
- Ayyanar, R.; Giri, R.; Mohan, N. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC–DC converters using dynamic input-voltage reference scheme. IEEE Trans. Power Electron. 2004, 19, 1462–1473. [Google Scholar] [CrossRef]
- Karlsson, P.; Svensson, J. DC bus voltage control for a distributed power system. IEEE Trans. Power Electron. 2003, 18, 1405–1412. [Google Scholar] [CrossRef] [Green Version]
- Khadem, S.; Basu, M.; Conlon, M.; Khadem, M.S.K. Parallel operation of inverters and active power filters in distributed generation system—A review. Renew. Sustain. Energy Rev. 2011, 15, 5155–5168. [Google Scholar] [CrossRef] [Green Version]
- Al-Nussairif, M.; Bayindir, R.; Sanjeevikumar, P.; Mihet-Popa, L.; Siano, P. Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies 2017, 10, 1656. [Google Scholar] [CrossRef]
- Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C.; Teodorescu, R.; Huang, L. Hierarchical Control of Parallel AC-DC Converter Interfaces for Hybrid Microgrids. IEEE Trans. Smart Grid 2014, 5, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Tahir, S.; Wang, J.; Baloch, M.H.; Kaloi, G.S. Digital control techniques based on voltage source inverters in renewable energy applications: A Review. Electronics 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Chen, M.; Matas, J.; Guerrero, J.M.; Qian, Z.M. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 2011, 58, 576–588. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodrguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
Manufacture | Model No. | Usage | Communication Method | Baud Rate (bps) |
---|---|---|---|---|
ABB | PVI String Series | String Inverter | Modbus RTU etc. | 19,200 |
LS is | SV Series | Solar Inverter | Modbus RTU etc. | 1200–19,200 |
Huawei | SUN2000 | String Inverter | Modbus RTU etc. | 19,200 |
Fronius | SYMO Series | String Inverter | Modbus RTU etc. | 2400–19,200 |
Solar Edge | SE Series | String Inverter | Modbus RTU etc. | 9600–115,200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.-K.; Park, S.-M.; Cha, H.-R.; Park, S.-J. A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware. Appl. Sci. 2019, 9, 5346. https://doi.org/10.3390/app9245346
Lim S-K, Park S-M, Cha H-R, Park S-J. A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware. Applied Sciences. 2019; 9(24):5346. https://doi.org/10.3390/app9245346
Chicago/Turabian StyleLim, Sang-Kil, Seong-Mi Park, Hyun-Rok Cha, and Sung-Jun Park. 2019. "A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware" Applied Sciences 9, no. 24: 5346. https://doi.org/10.3390/app9245346
APA StyleLim, S. -K., Park, S. -M., Cha, H. -R., & Park, S. -J. (2019). A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware. Applied Sciences, 9(24), 5346. https://doi.org/10.3390/app9245346